
If $\alpha $ and $\beta $ are zeros of the polynomial ${{x}^{2}}-a\left( x+1 \right)-b$ such that $\left( \alpha +1 \right)\left( \beta +1 \right)=0$ , find the value of b.
Answer
590.4k+ views
Hint: We have a polynomial given as: ${{x}^{2}}-a\left( x+1 \right)-b$. The roots of the polynomial are $\alpha $ and $\beta $ such that $\left( \alpha +1 \right)\left( \beta +1 \right)=0$. We need to find the values of $\alpha $ and $\beta $ first and then substitute in the equation $\left( \alpha +1 \right)\left( \beta +1 \right)=0$ to find the value of b.
To find the value of $\alpha $and $\beta $ use the identity for the sum of zeros and product of zeros of a polynomial. Since the polynomial given in the question is quadratic, so for a quadratic equation $a{{x}^{2}}+bx+c=0$;
Sum of zeros = $-\dfrac{b}{a}$
Product of zeros = $\dfrac{c}{a}$
Complete step by step answer:
We have a polynomial given as: ${{x}^{2}}-a\left( x+1 \right)-b$ whose are $\alpha $and $\beta $.
Rearranging the equation, we can write: ${{x}^{2}}-ax-a-b$
Since the polynomial is quadratic, so by using the identities:
Sum of zeros = $-\dfrac{b}{a}$
Product of zeros = $\dfrac{c}{a}$
For the given polynomial ${{x}^{2}}-a\left( x+1 \right)-b$, we can say:
Sum of zeros: $\alpha +\beta =-\dfrac{(-a)}{1}......(1)$
Product of zeros: $\alpha \beta =\dfrac{(-a-b)}{1}......(2)$
Now, we have an equation that gives the relation between $\alpha $and $\beta $as $\left( \alpha +1 \right)\left( \beta +1 \right)=0$
Solving the above equation, we get:
$\begin{align}
& \Rightarrow \left( \alpha +1 \right)\left( \beta +1 \right)=0 \\
& \Rightarrow \alpha \beta +\alpha +\beta +1=0......(3) \\
\end{align}$
Substitute the values of $\left( \alpha \beta \right),\left( \alpha +\beta \right)$ from equation (1) and (2) in equation (3), we get:
$\begin{align}
& \Rightarrow -a-b+a+1=0 \\
& \Rightarrow b=1 \\
\end{align}$
Hence b equals to 1.
Note: While applying the identity for the sum of zeros and product of zeros, always take care of the negative sign in the sum of zeros. Some deliberately miss out on the use of negative signs in the formula and this gives you the wrong value. Also, it was given in the question, that the polynomial is quadratic. For a higher degree of the polynomial, the formula for the sum of zeros and product of zeros changes accordingly.
To find the value of $\alpha $and $\beta $ use the identity for the sum of zeros and product of zeros of a polynomial. Since the polynomial given in the question is quadratic, so for a quadratic equation $a{{x}^{2}}+bx+c=0$;
Sum of zeros = $-\dfrac{b}{a}$
Product of zeros = $\dfrac{c}{a}$
Complete step by step answer:
We have a polynomial given as: ${{x}^{2}}-a\left( x+1 \right)-b$ whose are $\alpha $and $\beta $.
Rearranging the equation, we can write: ${{x}^{2}}-ax-a-b$
Since the polynomial is quadratic, so by using the identities:
Sum of zeros = $-\dfrac{b}{a}$
Product of zeros = $\dfrac{c}{a}$
For the given polynomial ${{x}^{2}}-a\left( x+1 \right)-b$, we can say:
Sum of zeros: $\alpha +\beta =-\dfrac{(-a)}{1}......(1)$
Product of zeros: $\alpha \beta =\dfrac{(-a-b)}{1}......(2)$
Now, we have an equation that gives the relation between $\alpha $and $\beta $as $\left( \alpha +1 \right)\left( \beta +1 \right)=0$
Solving the above equation, we get:
$\begin{align}
& \Rightarrow \left( \alpha +1 \right)\left( \beta +1 \right)=0 \\
& \Rightarrow \alpha \beta +\alpha +\beta +1=0......(3) \\
\end{align}$
Substitute the values of $\left( \alpha \beta \right),\left( \alpha +\beta \right)$ from equation (1) and (2) in equation (3), we get:
$\begin{align}
& \Rightarrow -a-b+a+1=0 \\
& \Rightarrow b=1 \\
\end{align}$
Hence b equals to 1.
Note: While applying the identity for the sum of zeros and product of zeros, always take care of the negative sign in the sum of zeros. Some deliberately miss out on the use of negative signs in the formula and this gives you the wrong value. Also, it was given in the question, that the polynomial is quadratic. For a higher degree of the polynomial, the formula for the sum of zeros and product of zeros changes accordingly.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?

