
If $\alpha \ and\ \beta $ are the zeros of the quadratic polynomial \[f\left( x \right) = a{{x}^{2}}+bx+c\], then evaluate: $\alpha -\beta $.
Answer
596.4k+ views
Hint: We will be using the concept of quadratic equations to solve the problem. We will be using the concept of sum of zeroes and product of zeroes also we will be using algebraic identities like,
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the polynomial\[f\left( x \right)=a{{x}^{2}}+bx+c\]. We have to evaluate the value of $\alpha -\beta $.
Now, we know that in a quadratic polynomial $a{{x}^{2}}+bx+c$.
$\begin{align}
& \text{sum of zeros }=\dfrac{-b}{a} \\
& \text{product of zeros }=\dfrac{c}{a} \\
\end{align}$
Therefore, we have the value of,
$\begin{align}
& \alpha +\beta =\dfrac{-b}{a} \\
& \alpha \beta =\dfrac{c}{a} \\
\end{align}$
Now, we have to find the value of $\alpha -\beta $ for this we will write ${{\left( \alpha -\beta \right)}^{2}}$ in terms of $\alpha +\beta \ and\ \alpha \beta $ as,
${{\left( \alpha -\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta $
Now, we will add and subtract $2\alpha \beta $ from RHS.
$\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -4\alpha \beta \\
& {{\left( \alpha -\beta \right)}^{2}}={{\left( \alpha +\beta \right)}^{2}}-4\alpha \beta \\
\end{align}$
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2).
$\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}={{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{4c}{a} \\
& =\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{4c}{a} \\
& =\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}} \\
& {{\left( \alpha -\beta \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}} \\
& \alpha -\beta =\pm \sqrt{\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}} \\
& =\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{a} \\
\end{align}$
Therefore, the value of $\alpha -\beta =\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{a}$.
Note: To solve these types of questions it is important to remember the relation between coefficient of quadratic equation and roots of the quadratic equation. Also identities like,
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ and\ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ are also important.
$\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}$
Complete Step-by-Step solution:
Now, we have been given $\alpha \ and\ \beta $are the zeros of the polynomial\[f\left( x \right)=a{{x}^{2}}+bx+c\]. We have to evaluate the value of $\alpha -\beta $.
Now, we know that in a quadratic polynomial $a{{x}^{2}}+bx+c$.
$\begin{align}
& \text{sum of zeros }=\dfrac{-b}{a} \\
& \text{product of zeros }=\dfrac{c}{a} \\
\end{align}$
Therefore, we have the value of,
$\begin{align}
& \alpha +\beta =\dfrac{-b}{a} \\
& \alpha \beta =\dfrac{c}{a} \\
\end{align}$
Now, we have to find the value of $\alpha -\beta $ for this we will write ${{\left( \alpha -\beta \right)}^{2}}$ in terms of $\alpha +\beta \ and\ \alpha \beta $ as,
${{\left( \alpha -\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta $
Now, we will add and subtract $2\alpha \beta $ from RHS.
$\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta -4\alpha \beta \\
& {{\left( \alpha -\beta \right)}^{2}}={{\left( \alpha +\beta \right)}^{2}}-4\alpha \beta \\
\end{align}$
Now, we will substitute the value of $\alpha +\beta \ and\ \alpha \beta $ from (1) and (2).
$\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}={{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{4c}{a} \\
& =\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{4c}{a} \\
& =\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}} \\
& {{\left( \alpha -\beta \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}} \\
& \alpha -\beta =\pm \sqrt{\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}} \\
& =\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{a} \\
\end{align}$
Therefore, the value of $\alpha -\beta =\pm \dfrac{\sqrt{{{b}^{2}}-4ac}}{a}$.
Note: To solve these types of questions it is important to remember the relation between coefficient of quadratic equation and roots of the quadratic equation. Also identities like,
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\ and\ {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ are also important.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

