
If \[\alpha \] and \[\beta \] are the roots of the equation \[{x^2} - p(x + 1) - c = 0\] then the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = ?\]
Answer
475.5k+ views
Hint: In the given question, the roots of a quadratic equation is given and we are asked to find the value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\]. As we know, standard form of an quadratic equation is \[a{x^2} + bx + c\], where \[a\], \[b\] and \[c\] are the coefficients and the quadratic equation in term of roots is given by: \[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]. Using this we will find \[c\]. Then we will substitute this \[c\] in the given expression to find its value.
Complete step by step answer:
Given, \[{x^2} - p(x + 1) - c = 0\]. \[\alpha \] and \[\beta \] are the roots of the equation. We have to find the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\].
The given quadratic equation is \[{x^2} - p(x + 1) - c = 0\] i.e., \[{x^2} - px - \left( {p + c} \right) = 0 - - - (1)\].
The roots of this quadratic equation are \[\alpha \] and \[\beta \].
As we know, a quadratic equation is of form:
\[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]
By applying this in the given quadratic equation, we get the equation the as
\[ \Rightarrow {x^2} - \left( {\alpha + \beta } \right)x + \alpha \beta = 0 - - - (2)\]
\[(1)\] and \[(2)\] represents the same equation, therefore on comparing we get
\[ \Rightarrow \alpha + \beta = p\] and \[\alpha \beta = - \left( {p + c} \right)\]
On solving, we get
\[ \Rightarrow c = - \alpha - \beta - \alpha \beta \]
Now putting the value of \[c\] in \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha - \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta - \alpha - \beta - \alpha \beta }}\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + \beta - \alpha - \alpha \beta }}\]
On taking common, we get
\[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\alpha \left( {\alpha + 1} \right) - \beta \left( {1 + \alpha } \right)}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{\beta \left( {\beta + 1} \right) - \alpha \left( {1 + \beta } \right)}}\]
Again, on taking common, we get
\[ \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{\beta ^2} + 2\beta + 1}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{{\left( {\alpha + 1} \right)}^2}}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{{\left( {\beta + 1} \right)}^2}}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Cancelling the common terms from the numerator and the denominator, we get
\[ \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
Taking \[\dfrac{1}{{\left( {\alpha - \beta } \right)}}\] common, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha + 1 - \beta - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha - \beta } \right)\]
On further simplification, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = 1\]
Therefore, the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\] is \[1\].
Note: \[{x^2} - p(x + 1) - c = 0\] is a quadratic equation. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Complete step by step answer:
Given, \[{x^2} - p(x + 1) - c = 0\]. \[\alpha \] and \[\beta \] are the roots of the equation. We have to find the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\].
The given quadratic equation is \[{x^2} - p(x + 1) - c = 0\] i.e., \[{x^2} - px - \left( {p + c} \right) = 0 - - - (1)\].
The roots of this quadratic equation are \[\alpha \] and \[\beta \].
As we know, a quadratic equation is of form:
\[{x^2} - \left( {{\text{sum of the roots}}} \right)x + \left( {{\text{product of the roots}}} \right) = 0\]
By applying this in the given quadratic equation, we get the equation the as
\[ \Rightarrow {x^2} - \left( {\alpha + \beta } \right)x + \alpha \beta = 0 - - - (2)\]
\[(1)\] and \[(2)\] represents the same equation, therefore on comparing we get
\[ \Rightarrow \alpha + \beta = p\] and \[\alpha \beta = - \left( {p + c} \right)\]
On solving, we get
\[ \Rightarrow c = - \alpha - \beta - \alpha \beta \]
Now putting the value of \[c\] in \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha - \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta - \alpha - \beta - \alpha \beta }}\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + \alpha - \beta - \alpha \beta }} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + \beta - \alpha - \alpha \beta }}\]
On taking common, we get
\[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\alpha \left( {\alpha + 1} \right) - \beta \left( {1 + \alpha } \right)}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{\beta \left( {\beta + 1} \right) - \alpha \left( {1 + \beta } \right)}}\]
Again, on taking common, we get
\[ \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{\beta ^2} + 2\beta + 1}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Using the identity \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\], we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{{{\left( {\alpha + 1} \right)}^2}}}{{\left( {\alpha + 1} \right)\left( {\alpha - \beta } \right)}} - \dfrac{{{{\left( {\beta + 1} \right)}^2}}}{{\left( {\beta + 1} \right)\left( {\alpha - \beta } \right)}}\]
Cancelling the common terms from the numerator and the denominator, we get
\[ \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{{\left( {\alpha + 1} \right)}}{{\left( {\alpha - \beta } \right)}} - \dfrac{{\left( {\beta + 1} \right)}}{{\left( {\alpha - \beta } \right)}}\]
Taking \[\dfrac{1}{{\left( {\alpha - \beta } \right)}}\] common, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha + 1 - \beta - 1} \right)\]
On simplifying, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = \dfrac{1}{{\left( {\alpha - \beta } \right)}}\left( {\alpha - \beta } \right)\]
On further simplification, we get
\[ \Rightarrow \dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}} = 1\]
Therefore, the numerical value of \[\dfrac{{{\alpha ^2} + 2\alpha + 1}}{{{\alpha ^2} + 2\alpha + c}} + \dfrac{{{\beta ^2} + 2\beta + 1}}{{{\beta ^2} + 2\beta + c}}\] is \[1\].
Note: \[{x^2} - p(x + 1) - c = 0\] is a quadratic equation. A quadratic equation function may have one, two, or zero roots. Roots are also called the x-intercept or zeroes. Also, the y-coordinate of any points lying on the x-axis is zero. So, to find the roots of a quadratic function, we set \[f(x) = 0\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

