
If \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\], then determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
(a) \[\dfrac{21}{346}\]
(b) \[\dfrac{29}{358}\]
(c) \[\dfrac{1}{12}\]
(d) \[\dfrac{7}{116}\]
Answer
571.2k+ views
Hint: In this question, we are that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\]. Now for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\]. We will also use the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Complete step by step answer:
We are given the equation \[375{{x}^{2}}-25x-2=0\].
It is also given that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Since we know that for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\].
Now comparing quadratic equation \[a{{x}^{2}}+bx+c=0\] with the given equation \[375{{x}^{2}}-25x-2=0\], we will have
\[a=375,b=-25\] and \[c=-2\].
Now since \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Therefore we have
\[\begin{align}
& \alpha +\beta =-\dfrac{b}{a} \\
& =\dfrac{25}{375}
\end{align}\]
And also
The product of the roots \[\alpha \] and \[\beta \] is given by
\[\begin{align}
& \alpha \beta =\dfrac{c}{a} \\
& =-\dfrac{2}{375}
\end{align}\]
Now consider the expression \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
Since we know that \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\], therefore we have
\[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}.........(1)\]
Also since we know that sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Here we have the geometric series \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] with common ration \[\alpha <1\] and \[\beta <1\] respectively.
Therefore the sum \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}=\dfrac{\alpha }{1-\alpha }.......(2)\]
And \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}=\dfrac{\beta }{1-\beta }.......(3)\]
Now on substituting the values of equation (2) and equation (3) in equation (1), we get
\[\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\alpha }^{r}}}+\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\beta }^{r}}}=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta }\]
On simplifying the above expression, we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta } \\
& =\dfrac{\alpha \left( 1-\beta \right)+\beta \left( 1-\alpha \right)}{\left( 1-\alpha \right)\left( 1-\beta \right)} \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\alpha -\beta +\alpha \beta } \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta }
\end{align}\]
Now on substituting the values \[\alpha +\beta =\dfrac{25}{375}\] and \[\alpha \beta =-\dfrac{2}{375}\] in the above equation we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta } \\
& =\dfrac{\dfrac{25}{375}-2\left( \dfrac{-2}{375} \right)}{1-\left( \dfrac{25}{375} \right)+\left( \dfrac{-2}{375} \right)}
\end{align}\]
On simplifying the above equation, we will have
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{25+4}{375-25-2} \\
& =\dfrac{29}{348} \\
& =\dfrac{1}{12}
\end{align}\]
Therefore we have that the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] is equals to \[\dfrac{1}{12}\].
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] we have to first evaluate the limit to get \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] and then proceed using the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Complete step by step answer:
We are given the equation \[375{{x}^{2}}-25x-2=0\].
It is also given that \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Since we know that for any quadratic equation \[a{{x}^{2}}+bx+c=0\], if \[p\] and \[q\] are the roots of the equation \[a{{x}^{2}}+bx+c=0\] then we have the sum of the roots \[p\] and \[q\] is given by \[p+q=-\dfrac{b}{a}\] and the products of the roots \[p\] and \[q\] is given by \[pq=\dfrac{c}{a}\].
Now comparing quadratic equation \[a{{x}^{2}}+bx+c=0\] with the given equation \[375{{x}^{2}}-25x-2=0\], we will have
\[a=375,b=-25\] and \[c=-2\].
Now since \[\alpha \] and \[\beta \] are the roots of the equation \[375{{x}^{2}}-25x-2=0\].
Therefore we have
\[\begin{align}
& \alpha +\beta =-\dfrac{b}{a} \\
& =\dfrac{25}{375}
\end{align}\]
And also
The product of the roots \[\alpha \] and \[\beta \] is given by
\[\begin{align}
& \alpha \beta =\dfrac{c}{a} \\
& =-\dfrac{2}{375}
\end{align}\]
Now consider the expression \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\].
Since we know that \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\], therefore we have
\[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}.........(1)\]
Also since we know that sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Here we have the geometric series \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}\] and \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] with common ration \[\alpha <1\] and \[\beta <1\] respectively.
Therefore the sum \[\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}=\dfrac{\alpha }{1-\alpha }.......(2)\]
And \[\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}=\dfrac{\beta }{1-\beta }.......(3)\]
Now on substituting the values of equation (2) and equation (3) in equation (1), we get
\[\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\alpha }^{r}}}+\displaystyle \lim_{n \to \infty}\sum\limits_{r=1}^{n}{{{\beta }^{r}}}=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta }\]
On simplifying the above expression, we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha }{1-\alpha }+\dfrac{\beta }{1-\beta } \\
& =\dfrac{\alpha \left( 1-\beta \right)+\beta \left( 1-\alpha \right)}{\left( 1-\alpha \right)\left( 1-\beta \right)} \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\alpha -\beta +\alpha \beta } \\
& =\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta }
\end{align}\]
Now on substituting the values \[\alpha +\beta =\dfrac{25}{375}\] and \[\alpha \beta =-\dfrac{2}{375}\] in the above equation we get
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{\alpha +\beta -2\alpha \beta }{1-\left( \alpha +\beta \right)+\alpha \beta } \\
& =\dfrac{\dfrac{25}{375}-2\left( \dfrac{-2}{375} \right)}{1-\left( \dfrac{25}{375} \right)+\left( \dfrac{-2}{375} \right)}
\end{align}\]
On simplifying the above equation, we will have
\[\begin{align}
& \displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\dfrac{25+4}{375-25-2} \\
& =\dfrac{29}{348} \\
& =\dfrac{1}{12}
\end{align}\]
Therefore we have that the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] is equals to \[\dfrac{1}{12}\].
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the value of \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)\] we have to first evaluate the limit to get \[\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\alpha }^{r}}} \right)+\displaystyle \lim_{n \to \infty}\left( \sum\limits_{r=1}^{n}{{{\beta }^{r}}} \right)=\sum\limits_{r=1}^{\infty }{{{\alpha }^{r}}}+\sum\limits_{r=1}^{\infty }{{{\beta }^{r}}}\] and then proceed using the fact that the sum of an infinite geometric series \[\sum\limits_{k=1}^{\infty }{{{a}^{k}}}=\dfrac{a}{1-a}\] whenever the value of \[a\] is less than 1.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

