
If $\alpha $ and $\beta $ are different complex numbers with $\left| \beta \right|=1$, then the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$ is
(a) 0
(b) 1
(c) 2
(d) 3
Answer
571.2k+ views
Hint: We start solving the problem by assuming the term ${{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}$ and make use of the property of complex numbers ${{\left| z \right|}^{2}}=z.\overline{z}$. We then make use of the properties of complex numbers $\overline{\left( \dfrac{a}{b} \right)}=\dfrac{\overline{a}}{\overline{b}}$, $\overline{\left( a-b \right)}=\overline{a}-\overline{b}$, $\overline{ab}=\overline{a}.\overline{b}$, $\overline{1}=1$ and $\overline{\overline{a}}=a$ to proceed through the problem. We then make use of the result $\left| \beta \right|=1$ and perform necessary calculations to get the value ${{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}$ which later gives the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$.
Complete step-by-step answer:
According to the problem, we are given that $\alpha $ and $\beta $ are different complex numbers with $\left| \beta \right|=1$. We need to find the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$.
Let us assume ${{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}$. We know that ${{\left| z \right|}^{2}}=z.\overline{z}$.
So, we get \[{{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\overline{\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right)}\] ---(1).
We know that $\overline{\left( \dfrac{a}{b} \right)}=\dfrac{\overline{a}}{\overline{b}}$. We muse this result in equation (1).
$\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\left( \dfrac{\overline{\left( \beta -\alpha \right)}}{\overline{\left( 1-\overline{\alpha }\beta \right)}} \right)$ ---(2).
We know that $\overline{\left( a-b \right)}=\overline{a}-\overline{b}$. We muse this result in equation (2)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{\overline{1}-\overline{\overline{\alpha }\beta }} \right)\] ---(3).
We know that $\overline{ab}=\overline{a}.\overline{b}$ and $\overline{1}=1$. We use this result in equation (3)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\overline{\overline{\alpha }}\overline{\beta }} \right)\] ---(4).
We know that $\overline{\overline{a}}=a$. We muse this result in equation (4)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\alpha \overline{\beta }} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta \overline{\beta }-\beta \overline{\alpha }-\alpha \overline{\beta }+\alpha \overline{\alpha }}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\beta \alpha \overline{\beta }} \right)\] ---(5).
We know that ${{\left| z \right|}^{2}}=z.\overline{z}$. We muse this result in equation (5)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{\left| \beta \right|}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\alpha \beta \overline{\beta }} \right)\].
From the problem, we are given that $\left| \beta \right|=1$.
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{1}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}{{\left| \beta \right|}^{2}}} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\left( {{\left| \alpha \right|}^{2}}\times {{1}^{2}} \right)} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=1\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1\].
So, we have found the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$ as 1.
So, the correct answer is “Option (b)”.
Note: We can see that the given problem contains good amount of calculation so, we need to perform each step carefully. We can also solve this problem as shown below:
We are given $\left| \beta \right|=1$ so, we get ${{\left| \beta \right|}^{2}}=1$. We know that ${{\left| z \right|}^{2}}=z.\overline{z}$.
So, we get $\beta .\overline{\beta }=1\Leftrightarrow \overline{\beta }=\dfrac{1}{\beta }$ ---(6).
We know that \[\left| \dfrac{a}{b} \right|=\dfrac{\left| a \right|}{\left| b \right|}\].
$\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta -\alpha \right|}{\left| 1-\overline{\alpha }\beta \right|}$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\dfrac{\alpha }{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|}\] ---(7).
Let us substitute equation (6) in equation (7).
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\alpha \overline{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
We know that $\left| a.b \right|=\left| a \right|\left| b \right|$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta \right|\left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{1\times \left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{1-\overline{\alpha }\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
Let us assume $z=1-\overline{\alpha }\beta $.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{z} \right|}{\left| z \right|}\].
We know that $\left| z \right|=\left| \overline{z} \right|$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1\].
Complete step-by-step answer:
According to the problem, we are given that $\alpha $ and $\beta $ are different complex numbers with $\left| \beta \right|=1$. We need to find the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$.
Let us assume ${{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}$. We know that ${{\left| z \right|}^{2}}=z.\overline{z}$.
So, we get \[{{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\overline{\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right)}\] ---(1).
We know that $\overline{\left( \dfrac{a}{b} \right)}=\dfrac{\overline{a}}{\overline{b}}$. We muse this result in equation (1).
$\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right).\left( \dfrac{\overline{\left( \beta -\alpha \right)}}{\overline{\left( 1-\overline{\alpha }\beta \right)}} \right)$ ---(2).
We know that $\overline{\left( a-b \right)}=\overline{a}-\overline{b}$. We muse this result in equation (2)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{\overline{1}-\overline{\overline{\alpha }\beta }} \right)\] ---(3).
We know that $\overline{ab}=\overline{a}.\overline{b}$ and $\overline{1}=1$. We use this result in equation (3)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\overline{\overline{\alpha }}\overline{\beta }} \right)\] ---(4).
We know that $\overline{\overline{a}}=a$. We muse this result in equation (4)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta -\alpha }{1-\overline{\alpha }\beta } \right).\left( \dfrac{\overline{\beta }-\overline{\alpha }}{1-\alpha \overline{\beta }} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{\beta \overline{\beta }-\beta \overline{\alpha }-\alpha \overline{\beta }+\alpha \overline{\alpha }}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\beta \alpha \overline{\beta }} \right)\] ---(5).
We know that ${{\left| z \right|}^{2}}=z.\overline{z}$. We muse this result in equation (5)
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{\left| \beta \right|}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\overline{\alpha }\alpha \beta \overline{\beta }} \right)\].
From the problem, we are given that $\left| \beta \right|=1$.
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{{{1}^{2}}-\beta \overline{\alpha }-\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}{{\left| \beta \right|}^{2}}} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+\left( {{\left| \alpha \right|}^{2}}\times {{1}^{2}} \right)} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=\left( \dfrac{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}}{1-\overline{\alpha }\beta -\alpha \overline{\beta }+{{\left| \alpha \right|}^{2}}} \right)\].
\[\Rightarrow {{\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|}^{2}}=1\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1\].
So, we have found the value of $\left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|$ as 1.
So, the correct answer is “Option (b)”.
Note: We can see that the given problem contains good amount of calculation so, we need to perform each step carefully. We can also solve this problem as shown below:
We are given $\left| \beta \right|=1$ so, we get ${{\left| \beta \right|}^{2}}=1$. We know that ${{\left| z \right|}^{2}}=z.\overline{z}$.
So, we get $\beta .\overline{\beta }=1\Leftrightarrow \overline{\beta }=\dfrac{1}{\beta }$ ---(6).
We know that \[\left| \dfrac{a}{b} \right|=\dfrac{\left| a \right|}{\left| b \right|}\].
$\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta -\alpha \right|}{\left| 1-\overline{\alpha }\beta \right|}$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\dfrac{\alpha }{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|}\] ---(7).
Let us substitute equation (6) in equation (7).
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \left( \beta \right)\left( 1-\alpha \overline{\beta } \right) \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
We know that $\left| a.b \right|=\left| a \right|\left| b \right|$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \beta \right|\left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{1\times \left| 1-\alpha \overline{\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{1-\overline{\alpha }\beta } \right|}{\left| 1-\overline{\alpha }\beta \right|}\].
Let us assume $z=1-\overline{\alpha }\beta $.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=\dfrac{\left| \overline{z} \right|}{\left| z \right|}\].
We know that $\left| z \right|=\left| \overline{z} \right|$.
\[\Rightarrow \left| \dfrac{\left( \beta -\alpha \right)}{\left( 1-\overline{\alpha }\beta \right)} \right|=1\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

