
If \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] are the roots of the equation \[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] , \[{{p}_{1}},{{p}_{2}},.......{{p}_{n}}\] being real, prove that
\[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)={{\left( 1-{{p}_{2}}+{{p}_{4}}+...... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}.... \right)}^{2}}\].
Answer
511.5k+ views
Hint:First of all, put the value of \[x=i\] in the equation \[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] . We know that \[{{i}^{2}}=-1\] . Now, substitute \[{{i}^{2}}\] by -1. Then, square the LHS and RHS of the equation \[{{\left\{ i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right) \right\}}^{2}}={{\left\{ -\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right) \right\}}^{2}}\] and substitute \[{{i}^{2}}\] by -1. Now, get the value of \[{{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}\] . Take \[{{\alpha }_{1}}={{\alpha }_{2}}={{\alpha }_{3}}=............={{\alpha }_{n}}=i\] and then square it. Again, substitute \[{{i}^{2}}\] by -1 and then, add 1 to it. Now, get the value of \[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)\] . Compare the value of the equation \[{{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}\] and \[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)\] . Now, solve it further and prove the required equation.
Complete step-by-step solution:
According to the question, it is given that we have an equation
\[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] ……………………………………………..(1)
The roots of the above equation are \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] ……………………………………(2)
Now, on putting the value of \[x=i\] in equation (1), we get
\[{{i}^{n}}+{{p}_{1}}{{i}^{n-1}}+{{p}_{2}}{{i}^{n-2}}+............+{{p}_{n-1}}i+{{p}_{n}}=0\] ……………………………………..(3)
Now, on taking the term \[{{i}^{n-1}}\] as common in the equation (3), we get
\[\begin{align}
& \Rightarrow {{i}^{n}}+{{p}_{1}}{{i}^{n-1}}+{{p}_{2}}{{i}^{n-2}}+............+{{p}_{n-1}}i+{{p}_{n}}=0 \\
& \Rightarrow {{i}^{n-1}}\left( i+{{p}_{1}}+{{p}_{2}}\dfrac{{{i}^{n-2}}}{{{i}^{n-1}}}+{{p}_{3}}\dfrac{{{i}^{n-3}}}{{{i}^{n-1}}}+{{p}_{4}}\dfrac{{{i}^{n-4}}}{{{i}^{n-1}}}+{{p}_{5}}\dfrac{{{i}^{n-5}}}{{{i}^{n-1}}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{{{i}^{n-2}}}{{{i}^{n-1}}}+{{p}_{3}}\dfrac{{{i}^{n-3}}}{{{i}^{n-1}}}+{{p}_{4}}\dfrac{{{i}^{n-4}}}{{{i}^{n-1}}}+{{p}_{5}}\dfrac{{{i}^{n-5}}}{{{i}^{n-1}}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-2 \right)}}}+{{p}_{3}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-3 \right)}}}+{{p}_{4}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-4 \right)}}}+{{p}_{5}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-5 \right)}}}+............ \right)=0 \\
\end{align}\]
\[\Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{{{i}^{1}}}+{{p}_{3}}\dfrac{1}{{{i}^{2}}}+{{p}_{4}}\dfrac{1}{{{i}^{3}}}+{{p}_{5}}\dfrac{1}{{{i}^{4}}}+............ \right)=0\] …………………………………..(4)
We know that \[{{i}^{2}}=-1\] …………………………………(5)
Now, from equation (4) and equation (5), we get
\[\begin{align}
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{i}+{{p}_{3}}\dfrac{1}{\left( -1 \right)}+{{p}_{4}}\dfrac{1}{i\left( -1 \right)}+{{p}_{5}}\dfrac{1}{\left( -1 \right)\left( -1 \right)}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{i}-{{p}_{3}}-{{p}_{4}}\dfrac{1}{i}+{{p}_{5}}+............ \right)=0 \\
\end{align}\]
\[\Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{i}{{{i}^{2}}}-{{p}_{3}}-{{p}_{4}}\dfrac{i}{{{i}^{2}}}+{{p}_{5}}+............ \right)=0\] …………………………………(6)
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (6), we get
\[\begin{align}
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{i}{\left( -1 \right)}-{{p}_{3}}-{{p}_{4}}\dfrac{i}{\left( -1 \right)}+{{p}_{5}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}-{{p}_{2}}i-{{p}_{3}}+{{p}_{4}}i+{{p}_{5}}+............ \right)=0 \\
& \Rightarrow i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)+\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)=0 \\
\end{align}\]
\[\Rightarrow i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)=-\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)\] ……………………………………..(7)
On squaring the LHS and RHS of equation (7), we get
\[\Rightarrow {{\left\{ i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right) \right\}}^{2}}={{\left\{ -\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right) \right\}}^{2}}\]
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (7), we get
\[\begin{align}
& \Rightarrow \left( -1 \right){{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}={{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}} \\
& \Rightarrow 0={{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}} \\
\end{align}\]
\[\Rightarrow {{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}=0\] ………………………………………….(8)
From equation (2), we have \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] as the roots of the equation \[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] .
Now, taking \[{{\alpha }_{1}}={{\alpha }_{2}}={{\alpha }_{3}}=............={{\alpha }_{n}}=i\] …………………………………(9)
Now, on squaring equation (9), we get
\[{{\alpha }_{1}}^{2}={{\alpha }_{2}}^{2}={{\alpha }_{3}}^{2}=............={{\alpha }_{n}}^{2}={{i}^{2}}\] …………………………………………….(10)
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (10), we get
\[{{\alpha }_{1}}^{2}={{\alpha }_{2}}^{2}={{\alpha }_{3}}^{2}=............={{\alpha }_{n}}^{2}=-1\] ………………………………………………(11)
Now, on adding 1 in equation (11), we get
\[\left( 1+{{\alpha }_{1}}^{2} \right)=\left( 1+{{\alpha }_{2}}^{2} \right)=\left( 1+{{\alpha }_{3}}^{2} \right)=............=\left( 1+{{\alpha }_{n}}^{2} \right)=-1+1=0\] ………………………………(12)
From equation (12), we have
\[\left( 1+{{\alpha }_{1}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{2}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{3}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{n}}^{2} \right)=0\]
Now, on multiplying, we get
\[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)=0\] ……………………………………..(13)
Now, from equation (8) and equation (13), we have
\[{{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}=0\]
\[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)=0\]
The RHS of equation (8) and equation (13) are equal to each other. So, the LHS of equation (8) and equation (13) must be equal to each other.
Therefore, \[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)={{\left( 1-{{p}_{2}}+{{p}_{4}}+...... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}.... \right)}^{2}}\] .
Hence, proved.
Note: In this question, one might get confused because the formula for the sum of the roots and products of roots is useless here. So, if we observe the expression which we have to prove, we can see that the signs of the coefficients are changing alternatively. Therefore, whenever we are given an equation and the coefficient of the variable x is changing alternatively, then approach that question by putting the value of the variable x equal to \[i\]
Complete step-by-step solution:
According to the question, it is given that we have an equation
\[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] ……………………………………………..(1)
The roots of the above equation are \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] ……………………………………(2)
Now, on putting the value of \[x=i\] in equation (1), we get
\[{{i}^{n}}+{{p}_{1}}{{i}^{n-1}}+{{p}_{2}}{{i}^{n-2}}+............+{{p}_{n-1}}i+{{p}_{n}}=0\] ……………………………………..(3)
Now, on taking the term \[{{i}^{n-1}}\] as common in the equation (3), we get
\[\begin{align}
& \Rightarrow {{i}^{n}}+{{p}_{1}}{{i}^{n-1}}+{{p}_{2}}{{i}^{n-2}}+............+{{p}_{n-1}}i+{{p}_{n}}=0 \\
& \Rightarrow {{i}^{n-1}}\left( i+{{p}_{1}}+{{p}_{2}}\dfrac{{{i}^{n-2}}}{{{i}^{n-1}}}+{{p}_{3}}\dfrac{{{i}^{n-3}}}{{{i}^{n-1}}}+{{p}_{4}}\dfrac{{{i}^{n-4}}}{{{i}^{n-1}}}+{{p}_{5}}\dfrac{{{i}^{n-5}}}{{{i}^{n-1}}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{{{i}^{n-2}}}{{{i}^{n-1}}}+{{p}_{3}}\dfrac{{{i}^{n-3}}}{{{i}^{n-1}}}+{{p}_{4}}\dfrac{{{i}^{n-4}}}{{{i}^{n-1}}}+{{p}_{5}}\dfrac{{{i}^{n-5}}}{{{i}^{n-1}}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-2 \right)}}}+{{p}_{3}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-3 \right)}}}+{{p}_{4}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-4 \right)}}}+{{p}_{5}}\dfrac{1}{{{i}^{\left( n-1 \right)-\left( n-5 \right)}}}+............ \right)=0 \\
\end{align}\]
\[\Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{{{i}^{1}}}+{{p}_{3}}\dfrac{1}{{{i}^{2}}}+{{p}_{4}}\dfrac{1}{{{i}^{3}}}+{{p}_{5}}\dfrac{1}{{{i}^{4}}}+............ \right)=0\] …………………………………..(4)
We know that \[{{i}^{2}}=-1\] …………………………………(5)
Now, from equation (4) and equation (5), we get
\[\begin{align}
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{i}+{{p}_{3}}\dfrac{1}{\left( -1 \right)}+{{p}_{4}}\dfrac{1}{i\left( -1 \right)}+{{p}_{5}}\dfrac{1}{\left( -1 \right)\left( -1 \right)}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{1}{i}-{{p}_{3}}-{{p}_{4}}\dfrac{1}{i}+{{p}_{5}}+............ \right)=0 \\
\end{align}\]
\[\Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{i}{{{i}^{2}}}-{{p}_{3}}-{{p}_{4}}\dfrac{i}{{{i}^{2}}}+{{p}_{5}}+............ \right)=0\] …………………………………(6)
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (6), we get
\[\begin{align}
& \Rightarrow \left( i+{{p}_{1}}+{{p}_{2}}\dfrac{i}{\left( -1 \right)}-{{p}_{3}}-{{p}_{4}}\dfrac{i}{\left( -1 \right)}+{{p}_{5}}+............ \right)=0 \\
& \Rightarrow \left( i+{{p}_{1}}-{{p}_{2}}i-{{p}_{3}}+{{p}_{4}}i+{{p}_{5}}+............ \right)=0 \\
& \Rightarrow i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)+\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)=0 \\
\end{align}\]
\[\Rightarrow i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)=-\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)\] ……………………………………..(7)
On squaring the LHS and RHS of equation (7), we get
\[\Rightarrow {{\left\{ i\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right) \right\}}^{2}}={{\left\{ -\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right) \right\}}^{2}}\]
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (7), we get
\[\begin{align}
& \Rightarrow \left( -1 \right){{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}={{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}} \\
& \Rightarrow 0={{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}} \\
\end{align}\]
\[\Rightarrow {{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}=0\] ………………………………………….(8)
From equation (2), we have \[{{\alpha }_{1}},{{\alpha }_{2}},{{\alpha }_{3}},............,{{\alpha }_{n}}\] as the roots of the equation \[{{x}^{n}}+{{p}_{1}}{{x}^{n-1}}+{{p}_{2}}{{x}^{n-2}}+............+{{p}_{n-1}}x+{{p}_{n}}=0\] .
Now, taking \[{{\alpha }_{1}}={{\alpha }_{2}}={{\alpha }_{3}}=............={{\alpha }_{n}}=i\] …………………………………(9)
Now, on squaring equation (9), we get
\[{{\alpha }_{1}}^{2}={{\alpha }_{2}}^{2}={{\alpha }_{3}}^{2}=............={{\alpha }_{n}}^{2}={{i}^{2}}\] …………………………………………….(10)
Now, on substituting the value of \[{{i}^{2}}=-1\] from equation (5) in equation (10), we get
\[{{\alpha }_{1}}^{2}={{\alpha }_{2}}^{2}={{\alpha }_{3}}^{2}=............={{\alpha }_{n}}^{2}=-1\] ………………………………………………(11)
Now, on adding 1 in equation (11), we get
\[\left( 1+{{\alpha }_{1}}^{2} \right)=\left( 1+{{\alpha }_{2}}^{2} \right)=\left( 1+{{\alpha }_{3}}^{2} \right)=............=\left( 1+{{\alpha }_{n}}^{2} \right)=-1+1=0\] ………………………………(12)
From equation (12), we have
\[\left( 1+{{\alpha }_{1}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{2}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{3}}^{2} \right)=0\]
\[\left( 1+{{\alpha }_{n}}^{2} \right)=0\]
Now, on multiplying, we get
\[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)=0\] ……………………………………..(13)
Now, from equation (8) and equation (13), we have
\[{{\left( 1-{{p}_{2}}+{{p}_{4}}+........... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}+.......... \right)}^{2}}=0\]
\[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)=0\]
The RHS of equation (8) and equation (13) are equal to each other. So, the LHS of equation (8) and equation (13) must be equal to each other.
Therefore, \[\left( 1+{{\alpha }_{1}}^{2} \right)\left( 1+{{\alpha }_{1}}^{2} \right)...\left( 1+{{\alpha }_{1}}^{2} \right)={{\left( 1-{{p}_{2}}+{{p}_{4}}+...... \right)}^{2}}+{{\left( {{p}_{1}}-{{p}_{3}}+{{p}_{5}}.... \right)}^{2}}\] .
Hence, proved.
Note: In this question, one might get confused because the formula for the sum of the roots and products of roots is useless here. So, if we observe the expression which we have to prove, we can see that the signs of the coefficients are changing alternatively. Therefore, whenever we are given an equation and the coefficient of the variable x is changing alternatively, then approach that question by putting the value of the variable x equal to \[i\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
