
If $ \alpha +\beta +\gamma =\pi $ , then $ \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) $
A. 0
B. $ \dfrac{1}{2} $
C. 1
D. $ 4\cos \alpha \cos \beta \cos \gamma $
Answer
493.5k+ views
Hint: We first make the changes for the angles where $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $ . We take the cos ratio for all three angles. We replace those values in the main equation. We use the sum of angles theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ . We get the solution.
Complete step-by-step answer:
The given condition is $ \alpha +\beta +\gamma =\pi $ . We get $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $
Applying ratio cos on three conditions, we get
$ \cos \alpha =\cos \left[ \pi -\left( \beta +\gamma \right) \right]=-\cos \left( \beta +\gamma \right) $
$ \cos \beta =\cos \left[ \pi -\left( \alpha +\gamma \right) \right]=-\cos \left( \alpha +\gamma \right) $
$ \cos \gamma =\cos \left[ \pi -\left( \alpha +\beta \right) \right]=-\cos \left( \alpha +\beta \right) $
The main equation becomes
\[\begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)-\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)-\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)+2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)+2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \right] \\
\end{align}\]
We use the theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ .
For \[2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)\], we get
\[\begin{align}
& 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right) \\
& =\sin \left( \beta +\gamma +\beta -\gamma \right)-\sin \left( \beta +\gamma -\beta +\gamma \right) \\
& =\sin \left( 2\beta \right)-\sin \left( 2\gamma \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right) \\
& =\sin \left( \alpha +\gamma +\gamma -\alpha \right)-\sin \left( \alpha +\gamma -\gamma +\alpha \right) \\
& =\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =\sin \left( \alpha +\beta +\alpha -\beta \right)-\sin \left( \alpha +\beta -\alpha +\beta \right) \\
& =\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \\
\end{align}\]
Therefore,
$ \begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ \sin \left( 2\beta \right)-\sin \left( 2\gamma \right)+\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right)+\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \right] \\
& =0 \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $ -\infty \le x\le \infty $ . In that case we have to use the formula $ x=n\pi \pm a $ for $ \cos \left( x \right)=\cos a $ where $ 0\le a\le \pi $ .
Complete step-by-step answer:
The given condition is $ \alpha +\beta +\gamma =\pi $ . We get $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $
Applying ratio cos on three conditions, we get
$ \cos \alpha =\cos \left[ \pi -\left( \beta +\gamma \right) \right]=-\cos \left( \beta +\gamma \right) $
$ \cos \beta =\cos \left[ \pi -\left( \alpha +\gamma \right) \right]=-\cos \left( \alpha +\gamma \right) $
$ \cos \gamma =\cos \left[ \pi -\left( \alpha +\beta \right) \right]=-\cos \left( \alpha +\beta \right) $
The main equation becomes
\[\begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)-\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)-\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)+2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)+2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \right] \\
\end{align}\]
We use the theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ .
For \[2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)\], we get
\[\begin{align}
& 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right) \\
& =\sin \left( \beta +\gamma +\beta -\gamma \right)-\sin \left( \beta +\gamma -\beta +\gamma \right) \\
& =\sin \left( 2\beta \right)-\sin \left( 2\gamma \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right) \\
& =\sin \left( \alpha +\gamma +\gamma -\alpha \right)-\sin \left( \alpha +\gamma -\gamma +\alpha \right) \\
& =\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =\sin \left( \alpha +\beta +\alpha -\beta \right)-\sin \left( \alpha +\beta -\alpha +\beta \right) \\
& =\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \\
\end{align}\]
Therefore,
$ \begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ \sin \left( 2\beta \right)-\sin \left( 2\gamma \right)+\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right)+\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \right] \\
& =0 \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $ -\infty \le x\le \infty $ . In that case we have to use the formula $ x=n\pi \pm a $ for $ \cos \left( x \right)=\cos a $ where $ 0\le a\le \pi $ .
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

