
If $ \alpha +\beta +\gamma =\pi $ , then $ \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) $
A. 0
B. $ \dfrac{1}{2} $
C. 1
D. $ 4\cos \alpha \cos \beta \cos \gamma $
Answer
508.2k+ views
Hint: We first make the changes for the angles where $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $ . We take the cos ratio for all three angles. We replace those values in the main equation. We use the sum of angles theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ . We get the solution.
Complete step-by-step answer:
The given condition is $ \alpha +\beta +\gamma =\pi $ . We get $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $
Applying ratio cos on three conditions, we get
$ \cos \alpha =\cos \left[ \pi -\left( \beta +\gamma \right) \right]=-\cos \left( \beta +\gamma \right) $
$ \cos \beta =\cos \left[ \pi -\left( \alpha +\gamma \right) \right]=-\cos \left( \alpha +\gamma \right) $
$ \cos \gamma =\cos \left[ \pi -\left( \alpha +\beta \right) \right]=-\cos \left( \alpha +\beta \right) $
The main equation becomes
\[\begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)-\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)-\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)+2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)+2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \right] \\
\end{align}\]
We use the theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ .
For \[2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)\], we get
\[\begin{align}
& 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right) \\
& =\sin \left( \beta +\gamma +\beta -\gamma \right)-\sin \left( \beta +\gamma -\beta +\gamma \right) \\
& =\sin \left( 2\beta \right)-\sin \left( 2\gamma \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right) \\
& =\sin \left( \alpha +\gamma +\gamma -\alpha \right)-\sin \left( \alpha +\gamma -\gamma +\alpha \right) \\
& =\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =\sin \left( \alpha +\beta +\alpha -\beta \right)-\sin \left( \alpha +\beta -\alpha +\beta \right) \\
& =\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \\
\end{align}\]
Therefore,
$ \begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ \sin \left( 2\beta \right)-\sin \left( 2\gamma \right)+\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right)+\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \right] \\
& =0 \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $ -\infty \le x\le \infty $ . In that case we have to use the formula $ x=n\pi \pm a $ for $ \cos \left( x \right)=\cos a $ where $ 0\le a\le \pi $ .
Complete step-by-step answer:
The given condition is $ \alpha +\beta +\gamma =\pi $ . We get $ \alpha =\pi -\left( \beta +\gamma \right) $ , $ \beta =\pi -\left( \alpha +\gamma \right) $ , $ \gamma =\pi -\left( \alpha +\beta \right) $
Applying ratio cos on three conditions, we get
$ \cos \alpha =\cos \left[ \pi -\left( \beta +\gamma \right) \right]=-\cos \left( \beta +\gamma \right) $
$ \cos \beta =\cos \left[ \pi -\left( \alpha +\gamma \right) \right]=-\cos \left( \alpha +\gamma \right) $
$ \cos \gamma =\cos \left[ \pi -\left( \alpha +\beta \right) \right]=-\cos \left( \alpha +\beta \right) $
The main equation becomes
\[\begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)-\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)-\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)+2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)+2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \right] \\
\end{align}\]
We use the theorem $ 2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) $ .
For \[2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right)\], we get
\[\begin{align}
& 2\cos \left( \beta +\gamma \right)\sin \left( \beta -\gamma \right) \\
& =\sin \left( \beta +\gamma +\beta -\gamma \right)-\sin \left( \beta +\gamma -\beta +\gamma \right) \\
& =\sin \left( 2\beta \right)-\sin \left( 2\gamma \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\gamma \right)\sin \left( \gamma -\alpha \right) \\
& =\sin \left( \alpha +\gamma +\gamma -\alpha \right)-\sin \left( \alpha +\gamma -\gamma +\alpha \right) \\
& =\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right) \\
\end{align}\]
For \[2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right)\], we get
\[\begin{align}
& 2\cos \left( \alpha +\beta \right)\sin \left( \alpha -\beta \right) \\
& =\sin \left( \alpha +\beta +\alpha -\beta \right)-\sin \left( \alpha +\beta -\alpha +\beta \right) \\
& =\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \\
\end{align}\]
Therefore,
$ \begin{align}
& \cos \alpha \sin \left( \beta -\gamma \right)+\cos \beta \sin \left( \gamma -\alpha \right)+\cos \gamma \sin \left( \alpha -\beta \right) \\
& =-\dfrac{1}{2}\left[ \sin \left( 2\beta \right)-\sin \left( 2\gamma \right)+\sin \left( 2\gamma \right)-\sin \left( 2\alpha \right)+\sin \left( 2\alpha \right)-\sin \left( 2\beta \right) \right] \\
& =0 \\
\end{align} $
The correct option is A.
So, the correct answer is “Option A”.
Note: The trigonometric functions of multiple angles are the multiple angle formula. Double and triple angles formulas are there under the multiple angle formulas. Sine, tangent and cosine are the general functions for the multiple angle formula. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $ -\infty \le x\le \infty $ . In that case we have to use the formula $ x=n\pi \pm a $ for $ \cos \left( x \right)=\cos a $ where $ 0\le a\le \pi $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

