
If $A=\left\{ \left( x,y \right):{{x}^{2}}+{{y}^{2}}=25 \right\}$ and $B=\left\{ \left( x,y \right):{{x}^{2}}+9{{y}^{2}}=144 \right\}$, then $A\bigcap B$ contains
[a] one point
[b] three points
[c] two points
[d] four points.
Answer
514.5k+ views
Hint: Assume (x,y) is in both sets A and B. Hence using the definitions of sets A and B form two equations in x and y. Solve for x and y. The number of solutions of the system is the number of points in $A\bigcap B$. Hence find the number of points in $A\bigcap B$. Alternatively, plot the two equations on a graph paper. The number of points of intersection of both curves gives the number of points in the intersection of sets A and B.
Complete step-by-step solution -
Let (x,y) be an element in both A and B.
Since (x,y) is in A, we have
${{x}^{2}}+{{y}^{2}}=25\text{ (i)}$
Also, since (x,y) is in B, we have
${{x}^{2}}+9{{y}^{2}}=144\text{ (ii)}$
Subtracting equation (i) from equation (ii), we get
$\begin{align}
& 9{{y}^{2}}-{{y}^{2}}=144-25 \\
& \Rightarrow 8{{y}^{2}}=119 \\
\end{align}$
Dividing both sides by 8, we get
${{y}^{2}}=\dfrac{119}{8}$
Subtracting $\dfrac{119}{8}$ from both sides, we get
${{y}^{2}}-\dfrac{119}{8}=0$
Writing the above expression in ${{a}^{2}}-{{b}^{2}}$ form, we get
${{y}^{2}}-{{\left( \sqrt{\dfrac{119}{8}} \right)}^{2}}=0$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
$\left( y+\sqrt{\dfrac{119}{8}} \right)\left( y-\sqrt{\dfrac{119}{8}} \right)=0$
Using zero product property, we have
$y+\sqrt{\dfrac{119}{8}}=0$ or $y-\sqrt{\dfrac{119}{8}}=0$
Hence $y=-\sqrt{\dfrac{119}{8}}$ or $y=\sqrt{\dfrac{119}{8}}$.
Also. We have
${{x}^{2}}+{{y}^{2}}=25$
Substituting the value of ${{y}^{2}}$, we get
${{x}^{2}}+\dfrac{119}{8}=25$
Subtracting $\dfrac{119}{8}$ from both sides, we get
${{x}^{2}}=25-\dfrac{119}{8}=\dfrac{200-119}{8}=\dfrac{81}{8}$
Subtracting $\dfrac{81}{8}$ from both sides, we get
${{x}^{2}}-\dfrac{81}{8}=0$
Writing the above expression in ${{a}^{2}}-{{b}^{2}}$ form, we get
${{x}^{2}}-{{\left( \sqrt{\dfrac{81}{8}} \right)}^{2}}=0$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
$\left( x+\sqrt{\dfrac{81}{8}} \right)\left( x-\sqrt{\dfrac{81}{8}} \right)=0$
Using zero product property, we have
$x+\sqrt{\dfrac{81}{8}}=0$ or $x-\sqrt{\dfrac{81}{8}}=0$
Hence $x=-\sqrt{\dfrac{81}{8}}$ or $x=\sqrt{\dfrac{81}{8}}$.
Hence the solutions are $\left( \sqrt{\dfrac{81}{8}},\sqrt{\dfrac{119}{8}} \right),\left( -\sqrt{\dfrac{81}{8}},\sqrt{\dfrac{119}{8}} \right),\left( \sqrt{\dfrac{81}{8}},-\sqrt{\dfrac{119}{8}} \right)$ and $\left( -\sqrt{\dfrac{81}{8}},-\sqrt{\dfrac{119}{8}} \right)$.
Hence there are four points in $A\bigcap B$
Hence option [d] is correct.
Note: Alternatively, we have
${{x}^{2}}+{{y}^{2}}=25$ is an equation of a circle with centre at (0,0) and radius = 5
And \[{{x}^{2}}+9{{y}^{2}}=144\] is an equation of an ellipse with centre at (0,0), major axis length as 24 and minor axis length as 8. The major axis is along the x-axis, and the minor axis is along the y-axis.
Keeping all these points in mind, we plot the curves, as shown below.
As is evident from the graph, there are four points of intersection. Hence the cardinality of $A\bigcap B$ is 4.
Complete step-by-step solution -
Let (x,y) be an element in both A and B.
Since (x,y) is in A, we have
${{x}^{2}}+{{y}^{2}}=25\text{ (i)}$
Also, since (x,y) is in B, we have
${{x}^{2}}+9{{y}^{2}}=144\text{ (ii)}$
Subtracting equation (i) from equation (ii), we get
$\begin{align}
& 9{{y}^{2}}-{{y}^{2}}=144-25 \\
& \Rightarrow 8{{y}^{2}}=119 \\
\end{align}$
Dividing both sides by 8, we get
${{y}^{2}}=\dfrac{119}{8}$
Subtracting $\dfrac{119}{8}$ from both sides, we get
${{y}^{2}}-\dfrac{119}{8}=0$
Writing the above expression in ${{a}^{2}}-{{b}^{2}}$ form, we get
${{y}^{2}}-{{\left( \sqrt{\dfrac{119}{8}} \right)}^{2}}=0$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
$\left( y+\sqrt{\dfrac{119}{8}} \right)\left( y-\sqrt{\dfrac{119}{8}} \right)=0$
Using zero product property, we have
$y+\sqrt{\dfrac{119}{8}}=0$ or $y-\sqrt{\dfrac{119}{8}}=0$
Hence $y=-\sqrt{\dfrac{119}{8}}$ or $y=\sqrt{\dfrac{119}{8}}$.
Also. We have
${{x}^{2}}+{{y}^{2}}=25$
Substituting the value of ${{y}^{2}}$, we get
${{x}^{2}}+\dfrac{119}{8}=25$
Subtracting $\dfrac{119}{8}$ from both sides, we get
${{x}^{2}}=25-\dfrac{119}{8}=\dfrac{200-119}{8}=\dfrac{81}{8}$
Subtracting $\dfrac{81}{8}$ from both sides, we get
${{x}^{2}}-\dfrac{81}{8}=0$
Writing the above expression in ${{a}^{2}}-{{b}^{2}}$ form, we get
${{x}^{2}}-{{\left( \sqrt{\dfrac{81}{8}} \right)}^{2}}=0$
We know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$
Using the above formula, we get
$\left( x+\sqrt{\dfrac{81}{8}} \right)\left( x-\sqrt{\dfrac{81}{8}} \right)=0$
Using zero product property, we have
$x+\sqrt{\dfrac{81}{8}}=0$ or $x-\sqrt{\dfrac{81}{8}}=0$
Hence $x=-\sqrt{\dfrac{81}{8}}$ or $x=\sqrt{\dfrac{81}{8}}$.
Hence the solutions are $\left( \sqrt{\dfrac{81}{8}},\sqrt{\dfrac{119}{8}} \right),\left( -\sqrt{\dfrac{81}{8}},\sqrt{\dfrac{119}{8}} \right),\left( \sqrt{\dfrac{81}{8}},-\sqrt{\dfrac{119}{8}} \right)$ and $\left( -\sqrt{\dfrac{81}{8}},-\sqrt{\dfrac{119}{8}} \right)$.
Hence there are four points in $A\bigcap B$
Hence option [d] is correct.
Note: Alternatively, we have
${{x}^{2}}+{{y}^{2}}=25$ is an equation of a circle with centre at (0,0) and radius = 5
And \[{{x}^{2}}+9{{y}^{2}}=144\] is an equation of an ellipse with centre at (0,0), major axis length as 24 and minor axis length as 8. The major axis is along the x-axis, and the minor axis is along the y-axis.
Keeping all these points in mind, we plot the curves, as shown below.

As is evident from the graph, there are four points of intersection. Hence the cardinality of $A\bigcap B$ is 4.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
