
If $ A=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
1 & 0 \\
5 & 1 \\
\end{matrix} \right] $ then value of $ \alpha $ for which $ {{A}^{2}}=B $ is
A. 1
B. -1
C. 4
D. no real values
Answer
568.2k+ views
Hint: To solve this question we will use the given condition $ {{A}^{2}}=B $ . First, we will calculate the value of $ {{A}^{2}} $ and then equate it to the value of B. Then by comparing both we will find the value of $ \alpha $ and then according to the value obtained we will choose the correct option.
Complete step by step answer:
We have been given that $ A=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
1 & 0 \\
5 & 1 \\
\end{matrix} \right] $ and $ {{A}^{2}}=B $ .
We have to find the value of $ \alpha $ for which $ {{A}^{2}}=B $ .
Let us consider $ {{A}^{2}}=B $ .
Now, we have to find the value of $ {{A}^{2}} $
Now, we know that $ {{A}^{2}}=A\times A $ and we have $ A=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $
Now, substituting the value and solving further we get
$ {{A}^{2}}=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $
As it is a $ 2\times 2 $ matrix the multiplication is done in the following manner:
$ \Rightarrow {{A}^{2}}=\left[ \begin{matrix}
\alpha \times \alpha & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right] $
Now, simplifying further we get
$ \Rightarrow {{A}^{2}}=\left[ \begin{matrix}
{{\alpha }^{2}} & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right] $
Now, we have given that $ {{A}^{2}}=B $
Substituting the values we get
$ \Rightarrow \left[ \begin{matrix}
{{\alpha }^{2}} & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
5 & 1 \\
\end{matrix} \right] $
Now, comparing both the sides we get
$ \Rightarrow {{\alpha }^{2}}=1 $ and $ \alpha +1=5 $
Now, solving both the equations we get
$ \Rightarrow \alpha =\pm 1 $ and $ \alpha =4 $
But different values of $ \alpha $ are not possible at the same time. It means $ \alpha $ has no real values.
So the correct answer is option D.
Note:
Students must have knowledge of matrix multiplication to solve this question. Students may choose option C as the correct answer or may choose multiple correct answers. But it leads to the wrong answer. So, be careful while choosing the option.
Complete step by step answer:
We have been given that $ A=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $ and $ B=\left[ \begin{matrix}
1 & 0 \\
5 & 1 \\
\end{matrix} \right] $ and $ {{A}^{2}}=B $ .
We have to find the value of $ \alpha $ for which $ {{A}^{2}}=B $ .
Let us consider $ {{A}^{2}}=B $ .
Now, we have to find the value of $ {{A}^{2}} $
Now, we know that $ {{A}^{2}}=A\times A $ and we have $ A=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $
Now, substituting the value and solving further we get
$ {{A}^{2}}=\left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right]\times \left[ \begin{matrix}
\alpha & 0 \\
1 & 1 \\
\end{matrix} \right] $
As it is a $ 2\times 2 $ matrix the multiplication is done in the following manner:
$ \Rightarrow {{A}^{2}}=\left[ \begin{matrix}
\alpha \times \alpha & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right] $
Now, simplifying further we get
$ \Rightarrow {{A}^{2}}=\left[ \begin{matrix}
{{\alpha }^{2}} & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right] $
Now, we have given that $ {{A}^{2}}=B $
Substituting the values we get
$ \Rightarrow \left[ \begin{matrix}
{{\alpha }^{2}} & 0 \\
\alpha +1 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 \\
5 & 1 \\
\end{matrix} \right] $
Now, comparing both the sides we get
$ \Rightarrow {{\alpha }^{2}}=1 $ and $ \alpha +1=5 $
Now, solving both the equations we get
$ \Rightarrow \alpha =\pm 1 $ and $ \alpha =4 $
But different values of $ \alpha $ are not possible at the same time. It means $ \alpha $ has no real values.
So the correct answer is option D.
Note:
Students must have knowledge of matrix multiplication to solve this question. Students may choose option C as the correct answer or may choose multiple correct answers. But it leads to the wrong answer. So, be careful while choosing the option.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

