
\[\text{If }A=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\text{ then }{{A}^{64}}\text{ is:}\]
(a) \[\left[ \begin{matrix}
1 & 32 \\
32 & 1 \\
\end{matrix} \right]\]
(b) \[\left[ \begin{matrix}
1 & 0 \\
32 & 1 \\
\end{matrix} \right]\]
(c) \[\left[ \begin{matrix}
1 & 32 \\
0 & 1 \\
\end{matrix} \right]\]
(d) None of these
Answer
600.9k+ views
Hint: To solve this question, we will first find matrices \[{{A}^{2}},{{A}^{3}},{{A}^{4}}.\] Then we will develop a relationship between the matrix A and the calculated matrices \[{{A}^{2}},{{A}^{3}},{{A}^{4}}.\] With the help of this relation, we will determine what will be matrix \[{{A}^{64}}.\]
Complete step-by-step answer:
In our question, it is given that
\[A=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\]
We will consider that
\[{{A}^{n}}=\left[ \begin{matrix}
{{a}_{11n}} & {{a}_{12n}} \\
{{a}_{21n}} & {{a}_{22n}} \\
\end{matrix} \right]\]
Thus,
\[{{a}_{111}}=1,{{a}_{121}}=\dfrac{1}{2},{{a}_{211}}=0,{{a}_{221}}=1\]
Now, to solve this question, we will first find the matrix \[{{A}^{2}}\]. The matrix \[{{A}^{2}}\] is given by:
\[{{A}^{2}}=A\times A\]
\[{{A}^{2}}=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]......\left( i \right)\]
The product of any two square matrices A and B is given by:
\[AB=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} \\
{{a}_{3}} & {{a}_{4}} \\
\end{matrix} \right]\left[ \begin{matrix}
{{b}_{1}} & {{b}_{2}} \\
{{b}_{3}} & {{b}_{4}} \\
\end{matrix} \right]=\left[ \begin{matrix}
{{a }_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{3}} & {{a}_{1}}{{b}_{2}}+{{a}_{2}}{{b}_{4}} \\
{{a}_{3}}{{b}_{1}}+{{a}_{4}}{{b}_{3}} & {{a}_{3}}{{b}_{2}}+{{a}_{4}}{{b}_{4}} \\
\end{matrix} \right]\]
With the help of the above formula, we will find the matrix \[{{A}^{2}}.\] Thus, we have the following equation:
\[{{A}^{2}}=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( \dfrac{1}{2}\times 0 \right) & \left( 1\times \dfrac{1}{2} \right)+\left( \dfrac{1}{2}\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
1+0 & \dfrac{1}{2}+\dfrac{1}{2} \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will find matrix \[{{A}^{3}}.\] The matrix \[{{A}^{3}}\] is given by:
\[{{A}^{3}}=A\times A\times A\]
\[{{A}^{3}}=\left( A\times A \right)\times A\]
\[{{A}^{3}}={{A}^{2}}\times A.....\left( ii \right)\]
Now, we will put the value of \[{{A}^{2}}\] and A in the second equation. Thus, we get the following equation:
\[{{A}^{3}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( 1\times 0 \right) & \left( 1\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{3}}=\left[ \begin{matrix}
1+0 & \dfrac{1}{2}+1 \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{3}}=\left[ \begin{matrix}
1 & \dfrac{3}{2} \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will find the matrix \[{{A}^{4}}.\] The matrix \[{{A}^{4}}\] is given by:
\[{{A}^{4}}=A\times A\times A\times A\]
\[{{A}^{4}}=\left( A\times A \right)\times \left( A\times A \right)\]
\[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}.....\left( iii \right)\]
Now, we will put the values of \[{{A}^{2}}\] in equation (iii). After doing this, we will get the following equation.
\[{{A}^{4}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( 1\times 0 \right) & \left( 1\times 1 \right)+\left( 1\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times 1 \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{4}}=\left[ \begin{matrix}
1+0 & 1+1 \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{4}}=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we can see that \[{{a}_{111}}={{a}_{112}}={{a}_{113}}={{a}_{114}}.\]
So, we can say that \[{{a}_{11}}={{a}_{11\left( 64 \right)}}.\]
\[\Rightarrow {{a}_{11\left( 64 \right)}}=1\]
Similarly, we can also see that \[{{a}_{211}}={{a}_{212}}={{a}_{213}}={{a}_{214}}.\]
So, we can say that \[{{a}_{21}}={{a}_{21\left( 64 \right)}}.\]
\[\Rightarrow {{a}_{21\left( 64 \right)}}=0\]
Similarly,
\[\Rightarrow {{a}_{22\left( 64 \right)}}=1\]
But we do not know anything about \[{{a}_{12\left( 64 \right)}}.\] To determine the relation, we have toe following data:
\[{{a}_{121}}=\dfrac{1}{2}\]
\[{{a}_{121}}=1=\dfrac{1}{2}\times 2\]
\[{{a}_{123}}=\dfrac{3}{2}=\dfrac{1}{2}\times 3\]
Similarly,
\[{{a}_{12\left( 64 \right)}}=\dfrac{1}{2}\times 64=32\]
Thus, the matrix \[{{A}^{64}}\] is given by:
\[{{A}^{64}}=\left[ \begin{matrix}
{{a}_{11\left( 64 \right)}} & {{a}_{12\left( 64 \right)}} \\
{{a}_{21\left( 64 \right)}} & {{a}_{22\left( 64 \right)}} \\
\end{matrix} \right]\]
On putting the respective values, we will get,
\[{{A}^{64}}=\left[ \begin{matrix}
1 & 32 \\
0 & 1 \\
\end{matrix} \right]\]
Hence, the option (c) is the right answer.
Note: We can also solve the above question as follows:
We will calculate \[{{A}^{2}}\] first. We get,
\[{{A}^{2}}=A\times A=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will calculate the matrix \[{{A}^{4}}.\] We get,
\[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will calculate the matrix \[{{A}^{8}}.\] We get,
\[{{A}^{8}}={{A}^{4}}\times {{A}^{4}}=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]\]
Similarly,
\[{{A}^{16}}={{A}^{8}}\times {{A}^{8}}=\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]\]
\[{{A}^{32}}={{A}^{16}}\times {{A}^{16}}=\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]\]
Hence,
\[{{A}^{64}}={{A}^{32}}\times {{A}^{32}}=\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 32 \\
0 & 1 \\
\end{matrix} \right]\]
Here, we can see that the answer we get here is also the same.
Complete step-by-step answer:
In our question, it is given that
\[A=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\]
We will consider that
\[{{A}^{n}}=\left[ \begin{matrix}
{{a}_{11n}} & {{a}_{12n}} \\
{{a}_{21n}} & {{a}_{22n}} \\
\end{matrix} \right]\]
Thus,
\[{{a}_{111}}=1,{{a}_{121}}=\dfrac{1}{2},{{a}_{211}}=0,{{a}_{221}}=1\]
Now, to solve this question, we will first find the matrix \[{{A}^{2}}\]. The matrix \[{{A}^{2}}\] is given by:
\[{{A}^{2}}=A\times A\]
\[{{A}^{2}}=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]......\left( i \right)\]
The product of any two square matrices A and B is given by:
\[AB=\left[ \begin{matrix}
{{a}_{1}} & {{a}_{2}} \\
{{a}_{3}} & {{a}_{4}} \\
\end{matrix} \right]\left[ \begin{matrix}
{{b}_{1}} & {{b}_{2}} \\
{{b}_{3}} & {{b}_{4}} \\
\end{matrix} \right]=\left[ \begin{matrix}
{{a }_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{3}} & {{a}_{1}}{{b}_{2}}+{{a}_{2}}{{b}_{4}} \\
{{a}_{3}}{{b}_{1}}+{{a}_{4}}{{b}_{3}} & {{a}_{3}}{{b}_{2}}+{{a}_{4}}{{b}_{4}} \\
\end{matrix} \right]\]
With the help of the above formula, we will find the matrix \[{{A}^{2}}.\] Thus, we have the following equation:
\[{{A}^{2}}=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( \dfrac{1}{2}\times 0 \right) & \left( 1\times \dfrac{1}{2} \right)+\left( \dfrac{1}{2}\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
1+0 & \dfrac{1}{2}+\dfrac{1}{2} \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will find matrix \[{{A}^{3}}.\] The matrix \[{{A}^{3}}\] is given by:
\[{{A}^{3}}=A\times A\times A\]
\[{{A}^{3}}=\left( A\times A \right)\times A\]
\[{{A}^{3}}={{A}^{2}}\times A.....\left( ii \right)\]
Now, we will put the value of \[{{A}^{2}}\] and A in the second equation. Thus, we get the following equation:
\[{{A}^{3}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( 1\times 0 \right) & \left( 1\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times \dfrac{1}{2} \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{3}}=\left[ \begin{matrix}
1+0 & \dfrac{1}{2}+1 \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{3}}=\left[ \begin{matrix}
1 & \dfrac{3}{2} \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will find the matrix \[{{A}^{4}}.\] The matrix \[{{A}^{4}}\] is given by:
\[{{A}^{4}}=A\times A\times A\times A\]
\[{{A}^{4}}=\left( A\times A \right)\times \left( A\times A \right)\]
\[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}.....\left( iii \right)\]
Now, we will put the values of \[{{A}^{2}}\] in equation (iii). After doing this, we will get the following equation.
\[{{A}^{4}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\left( 1\times 1 \right)+\left( 1\times 0 \right) & \left( 1\times 1 \right)+\left( 1\times 1 \right) \\
\left( 0\times 1 \right)+\left( 1\times 0 \right) & \left( 0\times 1 \right)+\left( 1\times 1 \right) \\
\end{matrix} \right]\]
\[{{A}^{4}}=\left[ \begin{matrix}
1+0 & 1+1 \\
0+0 & 0+1 \\
\end{matrix} \right]\]
\[{{A}^{4}}=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we can see that \[{{a}_{111}}={{a}_{112}}={{a}_{113}}={{a}_{114}}.\]
So, we can say that \[{{a}_{11}}={{a}_{11\left( 64 \right)}}.\]
\[\Rightarrow {{a}_{11\left( 64 \right)}}=1\]
Similarly, we can also see that \[{{a}_{211}}={{a}_{212}}={{a}_{213}}={{a}_{214}}.\]
So, we can say that \[{{a}_{21}}={{a}_{21\left( 64 \right)}}.\]
\[\Rightarrow {{a}_{21\left( 64 \right)}}=0\]
Similarly,
\[\Rightarrow {{a}_{22\left( 64 \right)}}=1\]
But we do not know anything about \[{{a}_{12\left( 64 \right)}}.\] To determine the relation, we have toe following data:
\[{{a}_{121}}=\dfrac{1}{2}\]
\[{{a}_{121}}=1=\dfrac{1}{2}\times 2\]
\[{{a}_{123}}=\dfrac{3}{2}=\dfrac{1}{2}\times 3\]
Similarly,
\[{{a}_{12\left( 64 \right)}}=\dfrac{1}{2}\times 64=32\]
Thus, the matrix \[{{A}^{64}}\] is given by:
\[{{A}^{64}}=\left[ \begin{matrix}
{{a}_{11\left( 64 \right)}} & {{a}_{12\left( 64 \right)}} \\
{{a}_{21\left( 64 \right)}} & {{a}_{22\left( 64 \right)}} \\
\end{matrix} \right]\]
On putting the respective values, we will get,
\[{{A}^{64}}=\left[ \begin{matrix}
1 & 32 \\
0 & 1 \\
\end{matrix} \right]\]
Hence, the option (c) is the right answer.
Note: We can also solve the above question as follows:
We will calculate \[{{A}^{2}}\] first. We get,
\[{{A}^{2}}=A\times A=\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & \dfrac{1}{2} \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will calculate the matrix \[{{A}^{4}}.\] We get,
\[{{A}^{4}}={{A}^{2}}\times {{A}^{2}}=\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\]
Now, we will calculate the matrix \[{{A}^{8}}.\] We get,
\[{{A}^{8}}={{A}^{4}}\times {{A}^{4}}=\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]\]
Similarly,
\[{{A}^{16}}={{A}^{8}}\times {{A}^{8}}=\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 4 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]\]
\[{{A}^{32}}={{A}^{16}}\times {{A}^{16}}=\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 8 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]\]
Hence,
\[{{A}^{64}}={{A}^{32}}\times {{A}^{32}}=\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 16 \\
0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 32 \\
0 & 1 \\
\end{matrix} \right]\]
Here, we can see that the answer we get here is also the same.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

