
If $A=\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]$ and ${{A}^{2}}=8A+K{{I}_{2}}$ , then $K$ is equal to:
$A)-1$
$B)1$
$C)-7$
$D)7$
Answer
416.1k+ views
Hint : To solve this question we need to have the knowledge of matrix and its operation. Firstly we will find the value for ${{A}^{2}}$. The matrix $I$denotes the identity matrix of four elements. We will do the operation of the matrix as per given in the question. Then we will equate the elements in the Right Hand Side of the matrix to that in the Left Hand Side of the matrix.
Complete step-by-step solution:
The question ask us to find value of $K$, if the condition given is ${{A}^{2}}=8A+K{{I}_{2}}$ and the matrix A is $A=\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]$. The first step is to calculate ${{A}^{2}}$ . On multiplying the two matrices we get:
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1\times 1+0\times 1 & -1\times 0+7\times 0 \\
-1\times 1+7\times -1 & 0\times -1+7\times 7 \\
\end{matrix} \right]$
On solving the matrix we get:
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$
Now we will solve for the L.H.S of the expression ${{A}^{2}}=8A+K{{I}_{2}}$. On solving we get:
$\Rightarrow 8A+K{{I}_{2}}=8\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]+K\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow 8A+K{{I}_{2}}=\left[ \begin{matrix}
8 & 0 \\
-8 & 56 \\
\end{matrix} \right]+\left[ \begin{matrix}
K & 0 \\
0 & K \\
\end{matrix} \right]$
Since the above two matrix of same length are being added so each element will be added giving the matrix as:
$\Rightarrow 8A+K{{I}_{2}}=\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$
Now the R.H.S. of the expression is $\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$. We will equate to $\left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$.On equating we will get:
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]=\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$
On equating we will get:
$\Rightarrow 8+K=1$
$\Rightarrow K=1-8$
$\Rightarrow K=-7$
$\therefore $ The value for $K$ is equal to $C)-7$.
Note: Do remember that all the matrices cannot be multiplied. For two matrices to be multiplied when the number of rows of the second matrix is the same as the number of columns of the first matrix. The above answer can be checked by substituting the value of $K$in the matrix $\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$. ON putting $K=-7$in the matrix, we get
$\Rightarrow \left[ \begin{matrix}
8-7 & 0 \\
-8 & 56-7 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$
Since the above matrix is same as ${{A}^{2}}$, so the answer we got is correct.
Complete step-by-step solution:
The question ask us to find value of $K$, if the condition given is ${{A}^{2}}=8A+K{{I}_{2}}$ and the matrix A is $A=\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]$. The first step is to calculate ${{A}^{2}}$ . On multiplying the two matrices we get:
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]$
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1\times 1+0\times 1 & -1\times 0+7\times 0 \\
-1\times 1+7\times -1 & 0\times -1+7\times 7 \\
\end{matrix} \right]$
On solving the matrix we get:
$\Rightarrow {{A}^{2}}=\left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$
Now we will solve for the L.H.S of the expression ${{A}^{2}}=8A+K{{I}_{2}}$. On solving we get:
$\Rightarrow 8A+K{{I}_{2}}=8\left[ \begin{matrix}
1 & 0 \\
-1 & 7 \\
\end{matrix} \right]+K\left[ \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right]$
$\Rightarrow 8A+K{{I}_{2}}=\left[ \begin{matrix}
8 & 0 \\
-8 & 56 \\
\end{matrix} \right]+\left[ \begin{matrix}
K & 0 \\
0 & K \\
\end{matrix} \right]$
Since the above two matrix of same length are being added so each element will be added giving the matrix as:
$\Rightarrow 8A+K{{I}_{2}}=\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$
Now the R.H.S. of the expression is $\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$. We will equate to $\left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$.On equating we will get:
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]=\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$
On equating we will get:
$\Rightarrow 8+K=1$
$\Rightarrow K=1-8$
$\Rightarrow K=-7$
$\therefore $ The value for $K$ is equal to $C)-7$.
Note: Do remember that all the matrices cannot be multiplied. For two matrices to be multiplied when the number of rows of the second matrix is the same as the number of columns of the first matrix. The above answer can be checked by substituting the value of $K$in the matrix $\left[ \begin{matrix}
8+K & 0 \\
-8 & 56+K \\
\end{matrix} \right]$. ON putting $K=-7$in the matrix, we get
$\Rightarrow \left[ \begin{matrix}
8-7 & 0 \\
-8 & 56-7 \\
\end{matrix} \right]$
$\Rightarrow \left[ \begin{matrix}
1 & 0 \\
-8 & 49 \\
\end{matrix} \right]$
Since the above matrix is same as ${{A}^{2}}$, so the answer we got is correct.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
