
If $A\left( -5,7 \right),B\left( -4,5 \right),C\left( -1,6 \right)$ and $D\left( 4,5 \right)$ are the vertices of a quadrilateral, then find its area.
Answer
574.5k+ views
Hint: Divide the quadrilateral ABDC into two triangles ABC and BCD. Find the areas of the triangle ABC and BCD and hence find the area of the quadrilateral ABDC.
Use the property that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
Complete step-by-step answer:
(Note that although ADC appears to be a straight line, it is not actually a straight line. This can be verified by finding the distances AC, CD and AD using distance formula and checking that $AD\ne AC+CD$)
We have by distance formula, $AC=\sqrt{{{\left( -5+4 \right)}^{2}}+{{\left( 7-5 \right)}^{2}}}=\sqrt{1+4}=\sqrt{5}$
Similarly by distance formula, we have $AD=\sqrt{{{\left( -5+1 \right)}^{2}}+{{\left( 7-6 \right)}^{2}}}=\sqrt{16+1}=\sqrt{17}$ and $CD=\sqrt{{{\left( -4+1 \right)}^{2}}+{{\left( 5-6 \right)}^{2}}}=\sqrt{9+1}=\sqrt{10}$. Clearly, we have $AC\ne CD+AD$. Hence, A,C and D are not collinear.
Finding the area of triangle ABC:
We know that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
We have ${{x}_{1}}=-5,{{x}_{2}}=-4,{{x}_{3}}=-1,{{y}_{1}}=7,{{y}_{2}}=5$ and ${{y}_{3}}=6$
Hence the area of triangle ABC $=\dfrac{1}{2}\left| -5\left( 5-6 \right)-4\left( 6-7 \right)-1\left( 7-5 \right) \right|=\dfrac{1}{2}\left| 5+4-2 \right|=\dfrac{7}{2}=3.5$ square units.
Finding the area of the triangle BCD:
We know that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
We have ${{x}_{1}}=-4,{{x}_{2}}=-1,{{x}_{3}}=4,{{y}_{1}}=5,{{y}_{2}}=6$ and ${{y}_{3}}=5$
Hence the area of the triangle BCD $=\dfrac{1}{2}\left| -4\left( 6-5 \right)-1\left( 5-5 \right)+4\left( 5-6 \right) \right|=\dfrac{1}{2}\left| -4-0-4 \right|=4$ square units
Hence the area of the quadrilateral ABDC = 4+3.5 = 7.5 square units.
Note: Alternative solution: Best Method.
If $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right),C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ and $D\equiv \left( {{x}_{4}},{{y}_{4}} \right)$ are the vertices of a quadrilateral ABCD, then the area of the quadrilateral is given by
$\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}}-{{x}_{3}} & {{y}_{1}}-{{y}_{3}} \\
{{x}_{2}}-{{x}_{4}} & {{y}_{2}}-{{y}_{4}} \\
\end{matrix} \right|$
Here we have ${{x}_{1}}=-5,{{x}_{2}}=-4,{{x}_{3}}=4,{{x}_{4}}=-1,{{y}_{1}}=7,{{y}_{2}}=5,{{y}_{3}}=5$ and ${{y}_{4}}=6.$
Hence the area of the quadrilateral ABDC is given by $\dfrac{1}{2}\left| \begin{matrix}
-5-4 & 7-5 \\
-4+1 & 5-6 \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
-9 & 2 \\
-3 & -1 \\
\end{matrix} \right|=\dfrac{1}{2}\left( 9+6 \right)=\dfrac{15}{2}=7.5$ square units, which is same as obtained above.
Use the property that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
Complete step-by-step answer:
(Note that although ADC appears to be a straight line, it is not actually a straight line. This can be verified by finding the distances AC, CD and AD using distance formula and checking that $AD\ne AC+CD$)
We have by distance formula, $AC=\sqrt{{{\left( -5+4 \right)}^{2}}+{{\left( 7-5 \right)}^{2}}}=\sqrt{1+4}=\sqrt{5}$
Similarly by distance formula, we have $AD=\sqrt{{{\left( -5+1 \right)}^{2}}+{{\left( 7-6 \right)}^{2}}}=\sqrt{16+1}=\sqrt{17}$ and $CD=\sqrt{{{\left( -4+1 \right)}^{2}}+{{\left( 5-6 \right)}^{2}}}=\sqrt{9+1}=\sqrt{10}$. Clearly, we have $AC\ne CD+AD$. Hence, A,C and D are not collinear.
Finding the area of triangle ABC:
We know that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
We have ${{x}_{1}}=-5,{{x}_{2}}=-4,{{x}_{3}}=-1,{{y}_{1}}=7,{{y}_{2}}=5$ and ${{y}_{3}}=6$
Hence the area of triangle ABC $=\dfrac{1}{2}\left| -5\left( 5-6 \right)-4\left( 6-7 \right)-1\left( 7-5 \right) \right|=\dfrac{1}{2}\left| 5+4-2 \right|=\dfrac{7}{2}=3.5$ square units.
Finding the area of the triangle BCD:
We know that if $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$ and $C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ then the area of the triangle ABC is given by $\dfrac{1}{2}\left| {{x}_{1}}\left( {{y}_{2}}-{{y}_{3}} \right)+{{x}_{2}}\left( {{y}_{3}}-{{y}_{1}} \right)+{{x}_{3}}\left( {{y}_{1}}-{{y}_{2}} \right) \right|$.
We have ${{x}_{1}}=-4,{{x}_{2}}=-1,{{x}_{3}}=4,{{y}_{1}}=5,{{y}_{2}}=6$ and ${{y}_{3}}=5$
Hence the area of the triangle BCD $=\dfrac{1}{2}\left| -4\left( 6-5 \right)-1\left( 5-5 \right)+4\left( 5-6 \right) \right|=\dfrac{1}{2}\left| -4-0-4 \right|=4$ square units
Hence the area of the quadrilateral ABDC = 4+3.5 = 7.5 square units.
Note: Alternative solution: Best Method.
If $A\equiv \left( {{x}_{1}},{{y}_{1}} \right),B\equiv \left( {{x}_{2}},{{y}_{2}} \right),C\equiv \left( {{x}_{3}},{{y}_{3}} \right)$ and $D\equiv \left( {{x}_{4}},{{y}_{4}} \right)$ are the vertices of a quadrilateral ABCD, then the area of the quadrilateral is given by
$\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}}-{{x}_{3}} & {{y}_{1}}-{{y}_{3}} \\
{{x}_{2}}-{{x}_{4}} & {{y}_{2}}-{{y}_{4}} \\
\end{matrix} \right|$
Here we have ${{x}_{1}}=-5,{{x}_{2}}=-4,{{x}_{3}}=4,{{x}_{4}}=-1,{{y}_{1}}=7,{{y}_{2}}=5,{{y}_{3}}=5$ and ${{y}_{4}}=6.$
Hence the area of the quadrilateral ABDC is given by $\dfrac{1}{2}\left| \begin{matrix}
-5-4 & 7-5 \\
-4+1 & 5-6 \\
\end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix}
-9 & 2 \\
-3 & -1 \\
\end{matrix} \right|=\dfrac{1}{2}\left( 9+6 \right)=\dfrac{15}{2}=7.5$ square units, which is same as obtained above.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

