If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then show that equation of locus of P is $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Answer
Verified
450.9k+ views
Hint: In this type of question we will make use of distance between two points formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be, AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ and also we also be using the square of difference of two variables i.e.,${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$.
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE