Answer
Verified
413.1k+ views
Hint: In this type of question we will make use of distance between two points formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be, AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $ and also we also be using the square of difference of two variables i.e.,${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$.
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Complete answer:
Step 1:
Given two points are A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ and P is variable point such that PA+PB=10.
So, from the given data sum of distance between PA and PB is 10, and we have show that the locus of the point P will be $\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
We have to use the point distance formula i.e., If A$({x_1},{y_1})$ and B$\left( {{x_2},{y_2}} \right)$ then the distance between these two points will be,
AB=$\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $.
Step 2:
Now here given that PA+PB=10, so let the point P be$\left( {x,y} \right)$.
PA+PB=10
By taking PB to R.H.S ,this can be rewritten as,
PA=10-PB----(1)
So, let's take L.H.S ,here PA$ = \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Now PB$ = \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $,
Step 3:
Now substituting these values in (1) we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( {0 - y} \right)}^2}} $
Now doing the subtraction inside the square root we get,
$ \Rightarrow \sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} = 10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} $
Now squaring on both sides we get,
$ \Rightarrow {\left( {\sqrt {{{\left( {4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2} = {\left( {10 - \sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)^2}$
Now removing the square root on R.H.S and applying difference of two variables on L.H.S we get,
$ \Rightarrow {\left( {4 - x} \right)^2} + {y^2} = {10^2} + {\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2} - 2\left( {10} \right)\left( {\sqrt {{{\left( { - 4 - x} \right)}^2} + {{\left( y \right)}^2}} } \right)$
Now simplifying both the sides we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + {\left( { - 4 - x} \right)^2} + {y^2}$
Simplifying on L.H.S we get,
$ \Rightarrow 16 + {x^2} - 8x + {y^2} = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 16 + 8x + {x^2} + {y^2}$
Now eliminating the like terms on both the sides we get,
$ \Rightarrow - 8x = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x$,
Now taking all terms to one side we get,
$ \Rightarrow 0 = 100 - 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} + 8x + 8x$
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\]
Now take the square root term on L.H.S we get,
$ \Rightarrow 16x + 100 = 20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} $
Now again squaring on both sides we get,
$ \Rightarrow {\left( {16x + 100} \right)^2} = {\left( {20\sqrt {{{\left( { - 4 - x} \right)}^2} + {y^2}} } \right)^2}$
Now applying the sum of squares of two variables on L.H.S and squaring on both sides we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = \left( {400\left( {{{\left( { - 4 - x} \right)}^2} + {y^2}} \right)} \right)\]
Again simplifying the left hand side we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 400\left( {16 + {x^2} + 8x + {y^2}} \right)\]
Now multiplying 400 on R.H.S we get,
\[ \Rightarrow 256{x^2} + 3200x + 10000 = 6400 + 400{x^2} + 3200x + 400{y^2}\]
Now eliminating like terms on both the sides we get,
\[ \Rightarrow 256{x^2} + 10000 = 6400 + 400{x^2} + 400{y^2}\]
Now taking all \[x\]terms to R.H.S and constant term to L.H.S we get,
\[ \Rightarrow 10000 - 6400 = 400{x^2} + 400{y^2} - 256{x^2}\]
Now simplifying we get,
\[ \Rightarrow 144{x^2} + 400{y^2} = 3600\]
Now taking R.H.S to L.H.S we get,
\[ \Rightarrow \dfrac{{144{x^2}}}{{3600}} + \dfrac{{400{y^2}}}{{3600}} = 1\]
Now again simplifying we get,
\[ \Rightarrow \dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Thus the equation of locus of point P will be \[\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\].
Hence Proved.
If A$\left( {4,0} \right)$ and B$\left( { - 4,0} \right)$ are two given points. A variable point P is such that PA+PB=10, then the equation of locus of P is$\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1$.
Note:
The Distance Formula is a useful tool in finding the distance between two points which can be arbitrarily represented as points $({x_1},{y_1})$and$\left( {{x_2},{y_2}} \right)$, The Distance Formula itself is actually derived from the Pythagorean Theorem which is \[{a^2} + {b^2} = {c^2}\] where\[c\]is the longest side of a right triangle (also known as the hypotenuse) and \[a\]and\[b\] are the other shorter sides (known as the legs of a right triangle). The very essence of the Distance Formula is to calculate the length of the hypotenuse of the right triangle which is represented by the letter\[c\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers