If $a\cos \theta -b\sin \theta =c$, show that $a\sin \theta +b\cos \theta =\pm \sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}$.
Answer
Verified
504.9k+ views
Hint: Square both sides of the given expression and use the trigonometric identities ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $and ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $ to obtain the square of the expression on LHS of the second expression. On rearrangement, the only expression that remains on the LHS is the square of $a\sin \theta +b\cos \theta $ and the RHS is an expression in a, b and c. Then find square roots on both sides to get the required result.
Complete step-by-step answer:
We are given the equation $a\cos \theta -b\sin \theta =c$. The first step in this case will be to square both sides. Thus, squaring both sides gives us
$\begin{align}
&{{\left( a\cos \theta -b\sin \theta \right)}^{2}}={{c}^{2}} \\
& \Rightarrow {{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta -2ab\sin \theta \cos \theta ={{c}^{2}} \\
\end{align}$
Now we know that ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ and that ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. We substitute these values in the squared expression to obtain
$\begin{align}
&{{a}^{2}}\left(1-{{\sin }^{2}}\theta \right)+{{b}^{2}}\left( 1-{{\cos }^{2}}\theta \right)-2ab\sin \theta \cos \theta ={{c}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta -{{b}^{2}}{{\cos }^{2}}\theta -2ab\sin \theta \cos \theta ={{c}^{2}} \\
& \Rightarrow {{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +2ab\sin \theta \cos \theta ={{a}^{2}}+{{b}^{2}}-{{c}^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \quad \ldots \left( 1 \right) \\
\end{align}$
Now, to consider the expression whose value has to be found, we square that expression to obtain
${{\left( a\sin \theta +b\cos \theta \right)}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +2ab\sin \theta \cos \theta $
The expression on this equation’s RHS is the same as the expression on the LHS of equation (1). Hence, the value of ${{\left( a\sin \theta +b\cos \theta \right)}^{2}}={{a}^{2}}+{{b}^{2}}-{{c}^{2}}$.
Taking square roots on both sides of this equation, we obtain $a\sin \theta +b\cos \theta =\pm \sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}$, which is the required result.
Hence the result is proved.
Note: The fairly simple question seems difficult at first sight but the trick is to transform the expression in the question to the one whose value has to be found. To do this in questions involving $\sin $ and $\cos $ functions of the same angle $\theta $, the best way is to find the square on both sides and then use the identities of ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ and ${{\sin }^{2}}\theta = 1-{{\cos}^{2}}\theta$.
Complete step-by-step answer:
We are given the equation $a\cos \theta -b\sin \theta =c$. The first step in this case will be to square both sides. Thus, squaring both sides gives us
$\begin{align}
&{{\left( a\cos \theta -b\sin \theta \right)}^{2}}={{c}^{2}} \\
& \Rightarrow {{a}^{2}}{{\cos }^{2}}\theta +{{b}^{2}}{{\sin }^{2}}\theta -2ab\sin \theta \cos \theta ={{c}^{2}} \\
\end{align}$
Now we know that ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ and that ${{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta $. We substitute these values in the squared expression to obtain
$\begin{align}
&{{a}^{2}}\left(1-{{\sin }^{2}}\theta \right)+{{b}^{2}}\left( 1-{{\cos }^{2}}\theta \right)-2ab\sin \theta \cos \theta ={{c}^{2}} \\
& \Rightarrow {{a}^{2}}+{{b}^{2}}-{{a}^{2}}{{\sin }^{2}}\theta -{{b}^{2}}{{\cos }^{2}}\theta -2ab\sin \theta \cos \theta ={{c}^{2}} \\
& \Rightarrow {{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +2ab\sin \theta \cos \theta ={{a}^{2}}+{{b}^{2}}-{{c}^{2}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \quad \ldots \left( 1 \right) \\
\end{align}$
Now, to consider the expression whose value has to be found, we square that expression to obtain
${{\left( a\sin \theta +b\cos \theta \right)}^{2}}={{a}^{2}}{{\sin }^{2}}\theta +{{b}^{2}}{{\cos }^{2}}\theta +2ab\sin \theta \cos \theta $
The expression on this equation’s RHS is the same as the expression on the LHS of equation (1). Hence, the value of ${{\left( a\sin \theta +b\cos \theta \right)}^{2}}={{a}^{2}}+{{b}^{2}}-{{c}^{2}}$.
Taking square roots on both sides of this equation, we obtain $a\sin \theta +b\cos \theta =\pm \sqrt{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}$, which is the required result.
Hence the result is proved.
Note: The fairly simple question seems difficult at first sight but the trick is to transform the expression in the question to the one whose value has to be found. To do this in questions involving $\sin $ and $\cos $ functions of the same angle $\theta $, the best way is to find the square on both sides and then use the identities of ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ and ${{\sin }^{2}}\theta = 1-{{\cos}^{2}}\theta$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE