
If \[a,b,c,d\] are four vectors then the value of \[\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\] is ___________
Answer
587.7k+ views
Hint: In this problem, use the two formulas of the vector product of four vectors and then convert and simplify further by cancelation of the common terms to get the required value of the given problem.
Complete step-by-step answer:
Given that \[a,b,c,d\] are four vectors.
We have to find the value of \[\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\]
We know that \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d\]
Let \[v = \left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\]. By using the above formula, we have
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d} \right]\]
Also, we know that \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\]
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]\]
Again, using the formula \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\] we get
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left[ {a{\text{ }}b{\text{ }}c} \right]d - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]\]
Cancelling the common terms, we have
\[
\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\
\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d} \right] \\
\Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\
\Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {c{\text{ }}d{\text{ }}b} \right]a{\text{ }}\,{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = \left[ {c{\text{ }}a{\text{ }}b} \right]d} \right] \\
\Rightarrow v = - 2\left[ {c{\text{ }}d{\text{ }}b} \right]a \\
\therefore v = 2\left[ {b{\text{ }}c{\text{ }}d} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d} \right] \\
\]
Thus, the value of \[\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\] is \[2\left[ {b{\text{ }}c{\text{ }}d} \right]a\].
Note: Here we have to remember the formulae
1. \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\]
2. \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d\]
3. \[\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d\]
4. \[\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d\]
Complete step-by-step answer:
Given that \[a,b,c,d\] are four vectors.
We have to find the value of \[\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\]
We know that \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d\]
Let \[v = \left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\]. By using the above formula, we have
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d} \right]\]
Also, we know that \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\]
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left( {a \times d} \right) \times \left( {b \times c} \right){\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]\]
Again, using the formula \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\] we get
\[ \Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a + \left[ {a{\text{ }}b{\text{ }}c} \right]d - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a} \right]\]
Cancelling the common terms, we have
\[
\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c + \left[ {a{\text{ }}d{\text{ }}b} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\
\Rightarrow v = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d} \right] \\
\Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {d{\text{ }}b{\text{ }}c} \right]a \\
\Rightarrow v = - \left[ {c{\text{ }}d{\text{ }}b} \right]a - \left[ {c{\text{ }}d{\text{ }}b} \right]a{\text{ }}\,{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = \left[ {c{\text{ }}a{\text{ }}b} \right]d} \right] \\
\Rightarrow v = - 2\left[ {c{\text{ }}d{\text{ }}b} \right]a \\
\therefore v = 2\left[ {b{\text{ }}c{\text{ }}d} \right]a{\text{ }}\left[ {\because \left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d} \right] \\
\]
Thus, the value of \[\left( {a \times b} \right) \times \left( {c \times d} \right) + \left( {a \times c} \right) \times \left( {d \times b} \right) + \left( {a \times d} \right) \times \left( {b \times c} \right)\] is \[2\left[ {b{\text{ }}c{\text{ }}d} \right]a\].
Note: Here we have to remember the formulae
1. \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}c{\text{ }}d} \right]b - \left[ {b{\text{ }}c{\text{ }}d} \right]a\]
2. \[\left( {a \times b} \right) \times \left( {c \times d} \right) = \left[ {a{\text{ }}b{\text{ }}d} \right]c - \left[ {a{\text{ }}b{\text{ }}c} \right]d\]
3. \[\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {a{\text{ }}c{\text{ }}b} \right]d\]
4. \[\left[ {a{\text{ }}b{\text{ }}c} \right]d = - \left[ {c{\text{ }}b{\text{ }}a} \right]d\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

