
If abcd = 1, where a, b, c, d are positive reals then the minimum value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$
( a ) 6
( b ) 10
( c ) 12
( d ) 20
Answer
574.5k+ views
Hint: For, solving this question we will use concept of A.M and G.M and the relation between A.M and G.M which is given as A.M of these n items is always equals to or greater than G.M of these n items that is $\text{A}\text{.M}\ge \text{G}\text{.M}$ by which we will get the possible minimum value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$.
Complete step-by-step solution:
In question, it is given that abcd = 1 and all four numbers a, b, c, d are positive real numbers.
We have to find the minimum possible value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$.
Okay, now we will first see what is Arithmetic Mean ( A.M ) and geometric Mean ( G.M )
The arithmetic mean is the average of a set of numerical values, as calculated by adding them together and dividing them by the number of terms in the set.
So, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, A.M of n items will be equals to
$\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n}$
Geometric mean is the calculation by first doing product of n terms and then finding ${{\text{n}}^{\text{th}}}$ root of product.
So, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, A.M of n items will be equals to
$\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}$
Now, let we have 10 terms as \[{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd}\], the A.M and G.M of numbers will be
\[\text{A}\text{.M = }\dfrac{\text{(}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\]
\[\text{G}\text{.M = (}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd}{{)}^{\dfrac{1}{10}}}\]
Now, we know that if we have n items say ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$, then A.M of these n items is always equals to or greater than G.M of these n items that is
$\text{A}\text{.M}\ge \text{G}\text{.M}$
So, for 10 numbers \[{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd}\],
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd})}^{\dfrac{1}{10}}}\]
On simplifying we get,
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{5}}\cdot {{\text{b}}^{5}}\cdot {{\text{c}}^{5}}\cdot {{\text{d}}^{5}})}^{\dfrac{1}{10}}}\]
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{5\times }}^{\dfrac{1}{10}}\]
On simplifying, we get
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{\dfrac{1}{2}}}\]
As it is given that, abcd = 1
So, \[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(1})}^{\dfrac{1}{2}}}\]
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge 1\]
Taking 10 from denominator on left hand side to numerator on right hand side by using cross multiplication, we get
\[\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10\]
Hence, we get \[\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10\] which means value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$is always equals to or greater than 10.
So, minimum value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$ is 10. Hence, option ( b ) is correct.
Note: For, solving such question we can use concept of A.M and G.M so, one must know the meaning, formula and relation of A.M and G.M that is, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, $\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n}$ and $\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}$. It is always important to solve questions carefully with no error as answer may get change we can make equation more complex.
Complete step-by-step solution:
In question, it is given that abcd = 1 and all four numbers a, b, c, d are positive real numbers.
We have to find the minimum possible value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$.
Okay, now we will first see what is Arithmetic Mean ( A.M ) and geometric Mean ( G.M )
The arithmetic mean is the average of a set of numerical values, as calculated by adding them together and dividing them by the number of terms in the set.
So, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, A.M of n items will be equals to
$\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n}$
Geometric mean is the calculation by first doing product of n terms and then finding ${{\text{n}}^{\text{th}}}$ root of product.
So, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, A.M of n items will be equals to
$\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}$
Now, let we have 10 terms as \[{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd}\], the A.M and G.M of numbers will be
\[\text{A}\text{.M = }\dfrac{\text{(}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\]
\[\text{G}\text{.M = (}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd}{{)}^{\dfrac{1}{10}}}\]
Now, we know that if we have n items say ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$, then A.M of these n items is always equals to or greater than G.M of these n items that is
$\text{A}\text{.M}\ge \text{G}\text{.M}$
So, for 10 numbers \[{{\text{a}}^{\text{2}}}\text{, }{{\text{b}}^{\text{2}}}\text{, }{{\text{c}}^{\text{2}}}\text{, }{{\text{d}}^{\text{2}}}\text{, ab, bc, cd, ad, ac, bd}\],
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{\text{2}}}\cdot {{\text{b}}^{\text{2}}}\cdot {{\text{c}}^{\text{2}}}\cdot {{\text{d}}^{\text{2}}}\cdot \text{ab}\cdot \text{bc}\cdot \text{cd}\cdot \text{ad}\cdot \text{ac}\cdot \text{bd})}^{\dfrac{1}{10}}}\]
On simplifying we get,
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(}{{\text{a}}^{5}}\cdot {{\text{b}}^{5}}\cdot {{\text{c}}^{5}}\cdot {{\text{d}}^{5}})}^{\dfrac{1}{10}}}\]
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{5\times }}^{\dfrac{1}{10}}\]
On simplifying, we get
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(a}\cdot \text{b}\cdot \text{c}\cdot \text{d})}^{\dfrac{1}{2}}}\]
As it is given that, abcd = 1
So, \[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge {{\text{(1})}^{\dfrac{1}{2}}}\]
\[\dfrac{\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})}{10}\ge 1\]
Taking 10 from denominator on left hand side to numerator on right hand side by using cross multiplication, we get
\[\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10\]
Hence, we get \[\text{ (}{{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}}\text{+ab+bc+cd+ad+ac+bd})\ge 10\] which means value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$is always equals to or greater than 10.
So, minimum value of ${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+{{d}^{2}}+ab+bc+cd+ad+ac+bd$ is 10. Hence, option ( b ) is correct.
Note: For, solving such question we can use concept of A.M and G.M so, one must know the meaning, formula and relation of A.M and G.M that is, if we have n items say, ${{n}_{1}},{{n}_{2}},.......,{{n}_{n}}$ then, $\text{A}\text{.M = }\dfrac{{{n}_{1}}+{{n}_{2}}+.......+{{n}_{n}}}{n}$ and $\text{G}\text{.M = (}{{n}_{1}}\cdot {{n}_{2}}\cdot .......\cdot {{n}_{n}}{{)}^{\dfrac{1}{n}}}$. It is always important to solve questions carefully with no error as answer may get change we can make equation more complex.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

