
If $a,b,c \in R$ , $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ then prove that ${x^3} + {y^3} + {z^3} - 3xyz$ is a perfect square.
Answer
575.1k+ views
Hint: Decompose ${x^3} + {y^3} + {z^3} - 3xyz$ using the formula ${x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}$ . And substitute the values of x, y, z given in the question whenever required to prove it as a perfect square.
Complete step-by-step solution:
We are given that $a,b,c \in R$ and $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ . We have to prove that ${x^3} + {y^3} + {z^3} - 3xyz$ is a perfect square.
${x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in $x + y + z$
$
x + y + z = {a^2} - bc + {b^2} - ca + {c^2} - ab \\
= \dfrac{1}{2} \times 2\left( {{a^2} - bc + {b^2} - ca + {c^2} - ab} \right) \\
= \dfrac{1}{2}\left( {2{a^2} - 2bc + 2{b^2} - 2ca + 2{c^2} - 2ab} \right) \\
= \dfrac{1}{2}\left( {{a^2} - 2ab + {b^2} + {b^2} - 2bc + {c^2} + {a^2} - 2ac + {c^2}} \right) \\
= \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right) \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {x - y} \right)^2}$
$
{\left( {x - y} \right)^2} = {\left( {{a^2} - bc - \left( {{b^2} - ca} \right)} \right)^2} \\
= {\left( {{a^2} - bc - {b^2} + ca} \right)^2} \\
= {\left( {\left( {{a^2} - {b^2}} \right) + c\left( {a - b} \right)} \right)^2} \\
= {\left( {\left( {a + b} \right)\left( {a - b} \right) + c\left( {a - b} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {a - b} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {a - b} \right)^2} \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {y - z} \right)^2}$
$
{\left( {y - z} \right)^2} = {\left( {{b^2} - ca - \left( {{c^2} - ab} \right)} \right)^2} \\
= {\left( {{b^2} - ca - {c^2} + ab} \right)^2} \\
= {\left( {\left( {{b^2} - {c^2}} \right) + a\left( {b - c} \right)} \right)^2} \\
= {\left( {\left( {b + c} \right)\left( {b - c} \right) + a\left( {b - c} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {b - c} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {b - c} \right)^2} \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {z - x} \right)^2}$
$
{\left( {z - x} \right)^2} = {\left( {{c^2} - ab - \left( {{a^2} - bc} \right)} \right)^2} \\
= {\left( {{c^2} - ab - {a^2} + bc} \right)^2} \\
= {\left( {\left( {{c^2} - {a^2}} \right) + b\left( {c - a} \right)} \right)^2} \\
= {\left( {\left( {c + a} \right)\left( {c - a} \right) + b\left( {c - a} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {c - a} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {c - a} \right)^2} \\
$
Now substitute the obtained results in ${x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}$
The value of $x + y + z = \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)$
$
{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\} \\
x + y + z = \dfrac{1}{2} \times \dfrac{1}{2}\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}\left\{ {{{\left( {a + b + c} \right)}^2}{{\left( {a - b} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {b - c} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {c - a} \right)}^2}} \right\} \\
$
Take out (a+b+c) common from the second term.
$
= \dfrac{1}{4} \times \left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}\left\{ {{{\left( {a + b + c} \right)}^2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)} \right\} \\
= {\left( {\dfrac{{a + b + c}}{2}} \right)^2}{\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}^2} \\
= {\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}} \right]^2} \\
$
Therefore, ${x^3} + {y^3} + {z^3} - 3xyz$ can be written as ${\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}} \right]^2}$ which is a perfect square.
Note: In mathematics, a square number or a perfect square is an integer that is the square of another integer; in other words, it is the product of some integer with itself. For example, 16 is a square number, since it can be written as 4×4. Square numbers are non-negative. The square of a number is always positive
Complete step-by-step solution:
We are given that $a,b,c \in R$ and $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ . We have to prove that ${x^3} + {y^3} + {z^3} - 3xyz$ is a perfect square.
${x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in $x + y + z$
$
x + y + z = {a^2} - bc + {b^2} - ca + {c^2} - ab \\
= \dfrac{1}{2} \times 2\left( {{a^2} - bc + {b^2} - ca + {c^2} - ab} \right) \\
= \dfrac{1}{2}\left( {2{a^2} - 2bc + 2{b^2} - 2ca + 2{c^2} - 2ab} \right) \\
= \dfrac{1}{2}\left( {{a^2} - 2ab + {b^2} + {b^2} - 2bc + {c^2} + {a^2} - 2ac + {c^2}} \right) \\
= \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right) \\
\left( {\because {{\left( {a - b} \right)}^2} = {a^2} - 2ab + {b^2}} \right) \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {x - y} \right)^2}$
$
{\left( {x - y} \right)^2} = {\left( {{a^2} - bc - \left( {{b^2} - ca} \right)} \right)^2} \\
= {\left( {{a^2} - bc - {b^2} + ca} \right)^2} \\
= {\left( {\left( {{a^2} - {b^2}} \right) + c\left( {a - b} \right)} \right)^2} \\
= {\left( {\left( {a + b} \right)\left( {a - b} \right) + c\left( {a - b} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {a - b} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {a - b} \right)^2} \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {y - z} \right)^2}$
$
{\left( {y - z} \right)^2} = {\left( {{b^2} - ca - \left( {{c^2} - ab} \right)} \right)^2} \\
= {\left( {{b^2} - ca - {c^2} + ab} \right)^2} \\
= {\left( {\left( {{b^2} - {c^2}} \right) + a\left( {b - c} \right)} \right)^2} \\
= {\left( {\left( {b + c} \right)\left( {b - c} \right) + a\left( {b - c} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {b - c} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {b - c} \right)^2} \\
$
Substitute the values of x, y, z given in the question as $x = {a^2} - bc,y = {b^2} - ca,z = {c^2} - ab$ in ${\left( {z - x} \right)^2}$
$
{\left( {z - x} \right)^2} = {\left( {{c^2} - ab - \left( {{a^2} - bc} \right)} \right)^2} \\
= {\left( {{c^2} - ab - {a^2} + bc} \right)^2} \\
= {\left( {\left( {{c^2} - {a^2}} \right) + b\left( {c - a} \right)} \right)^2} \\
= {\left( {\left( {c + a} \right)\left( {c - a} \right) + b\left( {c - a} \right)} \right)^2} \\
= {\left( {\left( {a + b + c} \right)\left( {c - a} \right)} \right)^2} \\
= {\left( {a + b + c} \right)^2}{\left( {c - a} \right)^2} \\
$
Now substitute the obtained results in ${x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\}$
The value of $x + y + z = \dfrac{1}{2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)$
$
{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left\{ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right\} \\
x + y + z = \dfrac{1}{2} \times \dfrac{1}{2}\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}\left\{ {{{\left( {a + b + c} \right)}^2}{{\left( {a - b} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {b - c} \right)}^2} + {{\left( {a + b + c} \right)}^2}{{\left( {c - a} \right)}^2}} \right\} \\
$
Take out (a+b+c) common from the second term.
$
= \dfrac{1}{4} \times \left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}\left\{ {{{\left( {a + b + c} \right)}^2}\left( {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right)} \right\} \\
= {\left( {\dfrac{{a + b + c}}{2}} \right)^2}{\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}^2} \\
= {\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}} \right]^2} \\
$
Therefore, ${x^3} + {y^3} + {z^3} - 3xyz$ can be written as ${\left[ {\left( {\dfrac{{a + b + c}}{2}} \right)\left\{ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right\}} \right]^2}$ which is a perfect square.
Note: In mathematics, a square number or a perfect square is an integer that is the square of another integer; in other words, it is the product of some integer with itself. For example, 16 is a square number, since it can be written as 4×4. Square numbers are non-negative. The square of a number is always positive
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

