
If a,b,c, and d are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity k, then prove that \[4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) = 2\sqrt {1 + k} \].
Answer
576.6k+ views
Hint: First we will let the sines of a,b,c and d to be k and the write each angle in terms of the sin of a and put all the values in the given equation to get the value of k.
\[
\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\
\sin \left( {\pi + x} \right) = - \sin x \\
\sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\
\]
Complete step by step solution:
The given equation is:
\[4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) = 2\sqrt {1 + k} ................\left( 1 \right)\]
Since sines of all the angles is equal therefore,
Let \[\sin a = \sin b - \sin c = \sin d = k\]
Since a,b ,c and d are in ascending order therefore a is the smallest angle.
Also, since all the angles are positive angles implies the sines of these angles are also positive
And since we know sin is positive only in first and second quadrants.
Hence, each angle can be written in terms of angle a :
\[b = \pi - a\]
Then, half of angle b is:
\[\dfrac{b}{2} = \dfrac{\pi }{2} - \dfrac{a}{2}\]
Similarly,
\[
c = 2\pi + a \\
\dfrac{c}{2} = \dfrac{{2\pi }}{2} + \dfrac{a}{2} \\
\dfrac{c}{2} = \pi + \dfrac{a}{2} \\
d = 3\pi - a \\
\dfrac{d}{2} = \dfrac{{3\pi }}{2} - \dfrac{a}{2} \\
\]
Now putting these values in Left hand side of equation1 we get:
\[
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) \\
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{\pi }{2} - \dfrac{a}{2}} \right){\text{ + }}2{\text{sin}}\left( {\pi + \dfrac{a}{2}} \right) + {\text{sin}}\left( {\dfrac{{3\pi }}{2} - \dfrac{a}{2}} \right) \\
\]
Now we know that,
\[
\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\
\sin \left( {\pi + x} \right) = - \sin x \\
\sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\
\]
Applying these formulas in the above equation we get:
\[
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3\cos \left( {\dfrac{a}{2}} \right) - 2\sin \left( {\dfrac{a}{2}} \right) - \cos \left( {\dfrac{a}{2}} \right) \\
{\text{LHS}} = 2{\text{sin}}\left( {\dfrac{a}{2}} \right) + 2\cos \left( {\dfrac{a}{2}} \right) \\
{\text{LHS}} = 2\left[ {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right] \\
{\text{LHS}} = 2\left[ {\sqrt {{{\left( {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right)}^2}} } \right] \\
\]
Now applying the following formula:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
We get:
\[{\text{LHS}} = 2\left[ {\sqrt {{{\sin }^2}\left( {\dfrac{a}{2}} \right) + {{\cos }^2}\left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{a}{2}} \right)\cos \left( {\dfrac{a}{2}} \right)} } \right]\]
Now applying following formulas:
\[
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
\]
We get:
\[
{\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( {2 \times \dfrac{a}{2}} \right)} } \right] \\
{\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( a \right)} } \right] \\
\]
Now since therefore,
\[{\text{LHS}} = 2\sqrt {1 + k} \]
And also, \[{\text{RHS}} = 2\sqrt {1 + k} \]
Therefore, \[{\text{LHS}} = {\text{RHS}}\]
Hence proved.
Note:
Since the angles, $a,b,c$, and $d$ are in ascending order and the values of sines of these angles are equal, therefore, the values of these angles are to be taken in symmetry of sinusoidal graph such that the sines of the angles are positive.
\[
\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\
\sin \left( {\pi + x} \right) = - \sin x \\
\sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\
\]
Complete step by step solution:
The given equation is:
\[4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) = 2\sqrt {1 + k} ................\left( 1 \right)\]
Since sines of all the angles is equal therefore,
Let \[\sin a = \sin b - \sin c = \sin d = k\]
Since a,b ,c and d are in ascending order therefore a is the smallest angle.
Also, since all the angles are positive angles implies the sines of these angles are also positive
And since we know sin is positive only in first and second quadrants.
Hence, each angle can be written in terms of angle a :
\[b = \pi - a\]
Then, half of angle b is:
\[\dfrac{b}{2} = \dfrac{\pi }{2} - \dfrac{a}{2}\]
Similarly,
\[
c = 2\pi + a \\
\dfrac{c}{2} = \dfrac{{2\pi }}{2} + \dfrac{a}{2} \\
\dfrac{c}{2} = \pi + \dfrac{a}{2} \\
d = 3\pi - a \\
\dfrac{d}{2} = \dfrac{{3\pi }}{2} - \dfrac{a}{2} \\
\]
Now putting these values in Left hand side of equation1 we get:
\[
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{b}{2}} \right){\text{ + }}2{\text{sin}}\left( {\dfrac{c}{2}} \right) + {\text{sin}}\left( {\dfrac{d}{2}} \right) \\
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3{\text{sin}}\left( {\dfrac{\pi }{2} - \dfrac{a}{2}} \right){\text{ + }}2{\text{sin}}\left( {\pi + \dfrac{a}{2}} \right) + {\text{sin}}\left( {\dfrac{{3\pi }}{2} - \dfrac{a}{2}} \right) \\
\]
Now we know that,
\[
\sin \left( {\dfrac{\pi }{2} - x} \right) = \cos x \\
\sin \left( {\pi + x} \right) = - \sin x \\
\sin \left( {\dfrac{{3\pi }}{2} - x} \right) = - \cos x \\
\]
Applying these formulas in the above equation we get:
\[
{\text{LHS}} = 4{\text{sin}}\left( {\dfrac{a}{2}} \right) + 3\cos \left( {\dfrac{a}{2}} \right) - 2\sin \left( {\dfrac{a}{2}} \right) - \cos \left( {\dfrac{a}{2}} \right) \\
{\text{LHS}} = 2{\text{sin}}\left( {\dfrac{a}{2}} \right) + 2\cos \left( {\dfrac{a}{2}} \right) \\
{\text{LHS}} = 2\left[ {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right] \\
{\text{LHS}} = 2\left[ {\sqrt {{{\left( {{\text{sin}}\left( {\dfrac{a}{2}} \right) + \cos \left( {\dfrac{a}{2}} \right)} \right)}^2}} } \right] \\
\]
Now applying the following formula:
\[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
We get:
\[{\text{LHS}} = 2\left[ {\sqrt {{{\sin }^2}\left( {\dfrac{a}{2}} \right) + {{\cos }^2}\left( {\dfrac{a}{2}} \right) + 2\sin \left( {\dfrac{a}{2}} \right)\cos \left( {\dfrac{a}{2}} \right)} } \right]\]
Now applying following formulas:
\[
{\sin ^2}x + {\cos ^2}x = 1 \\
\sin 2x = 2\sin x\cos x \\
\]
We get:
\[
{\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( {2 \times \dfrac{a}{2}} \right)} } \right] \\
{\text{LHS}} = 2\left[ {\sqrt {1 + \sin \left( a \right)} } \right] \\
\]
Now since therefore,
\[{\text{LHS}} = 2\sqrt {1 + k} \]
And also, \[{\text{RHS}} = 2\sqrt {1 + k} \]
Therefore, \[{\text{LHS}} = {\text{RHS}}\]
Hence proved.
Note:
Since the angles, $a,b,c$, and $d$ are in ascending order and the values of sines of these angles are equal, therefore, the values of these angles are to be taken in symmetry of sinusoidal graph such that the sines of the angles are positive.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

