
If \[a,b,\]A are given in a triangle and \[{c_1}\]and \[{c_2}\]are two possible values of third side such that \[c_1^2 + {c_1}{c_2} + c_2^2 = {a^2},\]then A is equal to
A. \[{30^o}\]
B. \[{60^o}\]
C. \[{90^o}\]
D. $ {120^o} $
Answer
511.8k+ views
Hint: Firstly, we will convert into the quadratic equation and we will find the sum of zeroes, product of zeroes. Further we will put the value of zeroes in the given equation and then we will find the angle A.
Complete step-by-step answer:
As we know that \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, cross multiplying the number
$ 2bc\,\cos A = {b^2} + {c^2} - {a^2} $
$ \Rightarrow {b^2} + {c^2} - {a^2} - 2bc\,\cos A = 0 $
In the above equation, we can do in the form of quadratic equation and C is the variable in which $ {c_1},{c_2} $ are zeros of equation:
$ {c^2} - 2bc\cos A + {b^2} - {a^2} = 0 $
Here, $ A = 1,\,B = - 2b\cos A,C = {b^2} - {a^2} $
Then, Sum of the zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - b}}{a} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - ( - 2b\cos A)}}{1} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = 2b\cos A $
And, product of zeroes $ ({c_1} \times {c_2}) = \dfrac{C}{a} $
product of zeroes $ {\left( {{c_1} \times c} \right)_2} = \dfrac{{{b^2} - {a^2}}}{1} $
product of zeroes $ \left( {{c_1} \times {c_2}} \right) = {b^2} - {a^2} $
It is given that: $ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(i)
Now,
$ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(ii)
We will add $ {c_1}{c_2} $ and subtracted the equation (ii) , we have
\[c_1^2 + {c_1}{c_2} + c_2^2 + {c_1}{c_2} - {c_1}{c_2} = {a^2}\]
\[c_1^2 + 2{c_1}{c_2} + c_2^2 - c_2^2 - {c_2}{c_2} = {a_2}\]
As, we know that \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
Then $ {({c_1} + {c_2})^2} - {c_1}{c_2} = {a^2} $ ……(iii)
Then, we will substitute the sum of zeroes $ ({c_1} + {c_2}) $ and product of zeroes $ ({c_1}{c_2}) $ in equation (iii), we have
\[{(2b\cos A)^2} - ({b^2} - {a^2}) = {a^2}\]
$ 4{b^2}{\cos ^2}A - {b^2} + {a^2} = {a^2} $
\[4{b^2}{\cos ^2}A - {b^2} + {a^2} - {a^2} = 0\]
$ \Rightarrow 4{b^2}{\cos ^2}A - {b^2} = 0 $
$ \Rightarrow 4{b^2}{\cos ^2}A = {b^2} $
$ \Rightarrow {\cos ^2}A = \dfrac{{{b^2}}}{{4{b^2}}} $
$ \Rightarrow {\cos ^2}A = \dfrac{1}{4} $
$ \Rightarrow {\cos ^2}A = {\left( {\dfrac{1}{2}} \right)^2} $
$ \Rightarrow \cos A = \pm \dfrac{1}{2} $
$ \therefore \cos A = 60 $
$ A = {60^o} $
So, the correct answer is “Option B”.
Note: When students convert the equation into quadratic equation then take c as a variable. Then put the exact value of zeroes in the equation to get the answer. We can also find the roots by sridharas method.
Complete step-by-step answer:
As we know that \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, cross multiplying the number
$ 2bc\,\cos A = {b^2} + {c^2} - {a^2} $
$ \Rightarrow {b^2} + {c^2} - {a^2} - 2bc\,\cos A = 0 $
In the above equation, we can do in the form of quadratic equation and C is the variable in which $ {c_1},{c_2} $ are zeros of equation:
$ {c^2} - 2bc\cos A + {b^2} - {a^2} = 0 $
Here, $ A = 1,\,B = - 2b\cos A,C = {b^2} - {a^2} $
Then, Sum of the zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - b}}{a} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - ( - 2b\cos A)}}{1} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = 2b\cos A $
And, product of zeroes $ ({c_1} \times {c_2}) = \dfrac{C}{a} $
product of zeroes $ {\left( {{c_1} \times c} \right)_2} = \dfrac{{{b^2} - {a^2}}}{1} $
product of zeroes $ \left( {{c_1} \times {c_2}} \right) = {b^2} - {a^2} $
It is given that: $ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(i)
Now,
$ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(ii)
We will add $ {c_1}{c_2} $ and subtracted the equation (ii) , we have
\[c_1^2 + {c_1}{c_2} + c_2^2 + {c_1}{c_2} - {c_1}{c_2} = {a^2}\]
\[c_1^2 + 2{c_1}{c_2} + c_2^2 - c_2^2 - {c_2}{c_2} = {a_2}\]
As, we know that \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
Then $ {({c_1} + {c_2})^2} - {c_1}{c_2} = {a^2} $ ……(iii)
Then, we will substitute the sum of zeroes $ ({c_1} + {c_2}) $ and product of zeroes $ ({c_1}{c_2}) $ in equation (iii), we have
\[{(2b\cos A)^2} - ({b^2} - {a^2}) = {a^2}\]
$ 4{b^2}{\cos ^2}A - {b^2} + {a^2} = {a^2} $
\[4{b^2}{\cos ^2}A - {b^2} + {a^2} - {a^2} = 0\]
$ \Rightarrow 4{b^2}{\cos ^2}A - {b^2} = 0 $
$ \Rightarrow 4{b^2}{\cos ^2}A = {b^2} $
$ \Rightarrow {\cos ^2}A = \dfrac{{{b^2}}}{{4{b^2}}} $
$ \Rightarrow {\cos ^2}A = \dfrac{1}{4} $
$ \Rightarrow {\cos ^2}A = {\left( {\dfrac{1}{2}} \right)^2} $
$ \Rightarrow \cos A = \pm \dfrac{1}{2} $
$ \therefore \cos A = 60 $
$ A = {60^o} $
So, the correct answer is “Option B”.
Note: When students convert the equation into quadratic equation then take c as a variable. Then put the exact value of zeroes in the equation to get the answer. We can also find the roots by sridharas method.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
