
If \[a,b,\]A are given in a triangle and \[{c_1}\]and \[{c_2}\]are two possible values of third side such that \[c_1^2 + {c_1}{c_2} + c_2^2 = {a^2},\]then A is equal to
A. \[{30^o}\]
B. \[{60^o}\]
C. \[{90^o}\]
D. $ {120^o} $
Answer
590.4k+ views
Hint: Firstly, we will convert into the quadratic equation and we will find the sum of zeroes, product of zeroes. Further we will put the value of zeroes in the given equation and then we will find the angle A.
Complete step-by-step answer:
As we know that \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, cross multiplying the number
$ 2bc\,\cos A = {b^2} + {c^2} - {a^2} $
$ \Rightarrow {b^2} + {c^2} - {a^2} - 2bc\,\cos A = 0 $
In the above equation, we can do in the form of quadratic equation and C is the variable in which $ {c_1},{c_2} $ are zeros of equation:
$ {c^2} - 2bc\cos A + {b^2} - {a^2} = 0 $
Here, $ A = 1,\,B = - 2b\cos A,C = {b^2} - {a^2} $
Then, Sum of the zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - b}}{a} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - ( - 2b\cos A)}}{1} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = 2b\cos A $
And, product of zeroes $ ({c_1} \times {c_2}) = \dfrac{C}{a} $
product of zeroes $ {\left( {{c_1} \times c} \right)_2} = \dfrac{{{b^2} - {a^2}}}{1} $
product of zeroes $ \left( {{c_1} \times {c_2}} \right) = {b^2} - {a^2} $
It is given that: $ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(i)
Now,
$ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(ii)
We will add $ {c_1}{c_2} $ and subtracted the equation (ii) , we have
\[c_1^2 + {c_1}{c_2} + c_2^2 + {c_1}{c_2} - {c_1}{c_2} = {a^2}\]
\[c_1^2 + 2{c_1}{c_2} + c_2^2 - c_2^2 - {c_2}{c_2} = {a_2}\]
As, we know that \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
Then $ {({c_1} + {c_2})^2} - {c_1}{c_2} = {a^2} $ ……(iii)
Then, we will substitute the sum of zeroes $ ({c_1} + {c_2}) $ and product of zeroes $ ({c_1}{c_2}) $ in equation (iii), we have
\[{(2b\cos A)^2} - ({b^2} - {a^2}) = {a^2}\]
$ 4{b^2}{\cos ^2}A - {b^2} + {a^2} = {a^2} $
\[4{b^2}{\cos ^2}A - {b^2} + {a^2} - {a^2} = 0\]
$ \Rightarrow 4{b^2}{\cos ^2}A - {b^2} = 0 $
$ \Rightarrow 4{b^2}{\cos ^2}A = {b^2} $
$ \Rightarrow {\cos ^2}A = \dfrac{{{b^2}}}{{4{b^2}}} $
$ \Rightarrow {\cos ^2}A = \dfrac{1}{4} $
$ \Rightarrow {\cos ^2}A = {\left( {\dfrac{1}{2}} \right)^2} $
$ \Rightarrow \cos A = \pm \dfrac{1}{2} $
$ \therefore \cos A = 60 $
$ A = {60^o} $
So, the correct answer is “Option B”.
Note: When students convert the equation into quadratic equation then take c as a variable. Then put the exact value of zeroes in the equation to get the answer. We can also find the roots by sridharas method.
Complete step-by-step answer:
As we know that \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
Now, cross multiplying the number
$ 2bc\,\cos A = {b^2} + {c^2} - {a^2} $
$ \Rightarrow {b^2} + {c^2} - {a^2} - 2bc\,\cos A = 0 $
In the above equation, we can do in the form of quadratic equation and C is the variable in which $ {c_1},{c_2} $ are zeros of equation:
$ {c^2} - 2bc\cos A + {b^2} - {a^2} = 0 $
Here, $ A = 1,\,B = - 2b\cos A,C = {b^2} - {a^2} $
Then, Sum of the zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - b}}{a} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = \dfrac{{ - ( - 2b\cos A)}}{1} $
Sum of zeroes $ \left( {{c_1} + {c_2}} \right) $ $ = 2b\cos A $
And, product of zeroes $ ({c_1} \times {c_2}) = \dfrac{C}{a} $
product of zeroes $ {\left( {{c_1} \times c} \right)_2} = \dfrac{{{b^2} - {a^2}}}{1} $
product of zeroes $ \left( {{c_1} \times {c_2}} \right) = {b^2} - {a^2} $
It is given that: $ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(i)
Now,
$ c_1^2 + {c_1}{c_2} + c_2^2 = {a^2} $ ……(ii)
We will add $ {c_1}{c_2} $ and subtracted the equation (ii) , we have
\[c_1^2 + {c_1}{c_2} + c_2^2 + {c_1}{c_2} - {c_1}{c_2} = {a^2}\]
\[c_1^2 + 2{c_1}{c_2} + c_2^2 - c_2^2 - {c_2}{c_2} = {a_2}\]
As, we know that \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
Then $ {({c_1} + {c_2})^2} - {c_1}{c_2} = {a^2} $ ……(iii)
Then, we will substitute the sum of zeroes $ ({c_1} + {c_2}) $ and product of zeroes $ ({c_1}{c_2}) $ in equation (iii), we have
\[{(2b\cos A)^2} - ({b^2} - {a^2}) = {a^2}\]
$ 4{b^2}{\cos ^2}A - {b^2} + {a^2} = {a^2} $
\[4{b^2}{\cos ^2}A - {b^2} + {a^2} - {a^2} = 0\]
$ \Rightarrow 4{b^2}{\cos ^2}A - {b^2} = 0 $
$ \Rightarrow 4{b^2}{\cos ^2}A = {b^2} $
$ \Rightarrow {\cos ^2}A = \dfrac{{{b^2}}}{{4{b^2}}} $
$ \Rightarrow {\cos ^2}A = \dfrac{1}{4} $
$ \Rightarrow {\cos ^2}A = {\left( {\dfrac{1}{2}} \right)^2} $
$ \Rightarrow \cos A = \pm \dfrac{1}{2} $
$ \therefore \cos A = 60 $
$ A = {60^o} $
So, the correct answer is “Option B”.
Note: When students convert the equation into quadratic equation then take c as a variable. Then put the exact value of zeroes in the equation to get the answer. We can also find the roots by sridharas method.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

