
If $a,b$ are positive quantities and if
\[{a_1} = \dfrac{{a + b}}{2}\] , \[{b_1} = \sqrt {{a_1}{b_1}} \]
\[{a_2} = \dfrac{{a{}_1 + {b_1}}}{2}\] , \[{b_2} = \sqrt {{a_2}{b_2}} \]
A) ${b_\infty } = \dfrac{{\sqrt {{a^2} + {b^2}} }}{{{{\cos }^{ - 1}}(a/b)}}$
B) ${b_\infty } = \dfrac{{\sqrt {{a^2} - {b^2}} }}{{{{\cos }^{ - 1}}(a/b)}}$
C) ${b_\infty } = \dfrac{{\sqrt {({a^2} - {b^2})} }}{{{{\cos }^{ - 1}}(a/b)}}$
D) None of these
Answer
549.6k+ views
Hint: To solve this question firstly we consider a particular value of $'a'$ ‘a’ in the form of $b$and$\cos \theta $. With the help of this value we can find the value of ${a_1}$ as we have given${a_1} = \dfrac{{a + b}}{2}$. Once value of ${b_1}$. We can calculate the value of ${b_1}$in the form of $\cos \theta $ function. With the help of the value of ${a_1}$ and ${b_1}$ we can calculate the value of ${b_2}$ and with the help of ${a_2}$ we can find ${b_3}$ and so on. In the last we get a series of $\cos $ functions. The applied unit on this sequence will get the required result.
Complete step by step solutions:
We have given that $a,b$ are positive quantities and $a$ is smaller than$b$. Also we have
\[{a_1} = \dfrac{{a + b}}{2}\] , \[{b_1} = \sqrt {{a_1}{b_1}} \], \[{a_2} = \dfrac{{a{}_1 + {b_1}}}{2}\] , \[{b_2} = \sqrt {{a_2}{b_2}} \]and so on…
Let us consider that \[a = b\cos \theta \]
We have given that \[{a_1} = \dfrac{{a + b}}{2}\]
So \[{a_1} = \dfrac{{b\cos \theta + b}}{2}\]
$ \Rightarrow \dfrac{b}{2}\left( {\cos \theta + 1} \right)$
$ \Rightarrow {a_1} = \dfrac{b}{2}(1 + \cos \theta )$
We know that $1 + \cos \theta = 2{\cos ^2}{\raise0.5ex\hbox{$\scriptstyle 0$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$
Therefore ${a_1} = \dfrac{b}{2}\left( {2{{\cos }^2}\dfrac{\theta }{2}} \right) = b{\cos ^2}\dfrac{\theta }{2}$
$ \Rightarrow {a_1} = b{\cos ^2}\dfrac{\theta }{2}$
We have given that ${b_1} = \sqrt {{a_1}b} $
Putting value of ${a_1}$ , we get
\[{b_1} = \sqrt {b \times b{{\cos }^2}\dfrac{\theta }{2}} = \sqrt {{b^2}{{\cos }^2}{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} = b\cos {\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}\]
So value of \[{b_1} = b\cos \dfrac{\theta }{2}\]
Also we have given that \[{a_2} = \dfrac{{{a_1} + {b_1}}}{2}\]putting the value of ${a_1}$ and ${a_2}$ in
${a_2} = \dfrac{{b{{\cos }^2}\dfrac{\theta }{2} + b\cos \dfrac{\theta }{2}}}{2} = \dfrac{{b\cos \dfrac{\theta }{2}\left( {\cos \dfrac{\theta }{2} + 1} \right)}}{2}$
$ \Rightarrow \dfrac{{b\cos \dfrac{\theta }{2} + b{{\cos }^2}\dfrac{\theta }{2}}}{2} = b\cos \dfrac{\theta }{2}{\cos ^2}\dfrac{\theta }{4}$
${b_2} = \sqrt {{a_2}{b_1}} $
\[ \Rightarrow \sqrt {{b^2}{{\cos }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{4}} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\]
$ \Rightarrow {b_2} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}$
So from the above sequence of ${b_2}$ we can write the value of ${b_3}$
${b_3} = b\cos \dfrac{\theta }{2}.\cos \dfrac{\theta }{4}.\cos \dfrac{\theta }{8}$
So, ${b_n} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}\cos \dfrac{\theta }{{16}},........\cos \dfrac{\theta }{{{2^n}}}$
Now ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } bn$
Therefore ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ \[b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}.......\cos \dfrac{\theta }{{{2^n}}}\]
Now we have $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Therefore $\cos \dfrac{\theta }{2} = \dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}}$
We get ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ $b\dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}} \times \dfrac{{\sin \dfrac{\theta }{2}}}{{2\sin \dfrac{\theta }{4}}} \times \dfrac{{\sin \dfrac{\theta }{4}}}{{2\sin \dfrac{\theta }{8}}}$
${b_\infty } = \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{{{2^n}\sin \dfrac{\theta }{{{2^n}}}}}$
Now ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ $b\dfrac{\theta }{{{2^n}}} \times \dfrac{{\sin \theta }}{{\theta \sin \dfrac{\theta }{{{2^n}}}}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{\theta }.\left( {\dfrac{{{{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}{{\sin {{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}} \right)$
\[ \Rightarrow b\dfrac{{\sin \theta }}{\theta }.\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{\dfrac{\theta }{{{2^n}}}}}{{\sin {{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}} \right)\]
\[ \Rightarrow \dfrac{{b\sin \theta }}{\theta } \times 1\]
$ \Rightarrow {b_\infty } = b\dfrac{{\sin \theta }}{\theta }$
Now $a = b\cos \theta $
\[ \Rightarrow \cos \theta = \dfrac{a}{b}\]
$\sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} $
Also $\cos \theta = \dfrac{\theta }{b}$
$\theta = {\cos ^{ - 1}}\dfrac{a}{b}$
So, \[{b_\infty } = \dfrac{{b\sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}} = \dfrac{{b\sqrt {\dfrac{{{b^2} - {a^2}}}{b}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}\]
\[ \Rightarrow {b_\infty } = \dfrac{{\sqrt {{b^2} - {a^2}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}\]
This is the requested result.
Therefore option $(B)$ is the correct answer.
Note:
Trigonometry is the branch of mathematics concerned with specific functions of angles and this application to calculations. There are six trigonometric functions of angles commonly used in trigonometry. Their names are $\sin e(\sin ),\cos ine(\cos ),$ $\tan gent(\tan ),\cot anget(\cot ),$ $\cot a\sec ant(\sec ),\cos ecant(\cos ec)$.
These trigonometric functions are related to the angle and the ratio of the sides of the triangle.
Complete step by step solutions:
We have given that $a,b$ are positive quantities and $a$ is smaller than$b$. Also we have
\[{a_1} = \dfrac{{a + b}}{2}\] , \[{b_1} = \sqrt {{a_1}{b_1}} \], \[{a_2} = \dfrac{{a{}_1 + {b_1}}}{2}\] , \[{b_2} = \sqrt {{a_2}{b_2}} \]and so on…
Let us consider that \[a = b\cos \theta \]
We have given that \[{a_1} = \dfrac{{a + b}}{2}\]
So \[{a_1} = \dfrac{{b\cos \theta + b}}{2}\]
$ \Rightarrow \dfrac{b}{2}\left( {\cos \theta + 1} \right)$
$ \Rightarrow {a_1} = \dfrac{b}{2}(1 + \cos \theta )$
We know that $1 + \cos \theta = 2{\cos ^2}{\raise0.5ex\hbox{$\scriptstyle 0$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}$
Therefore ${a_1} = \dfrac{b}{2}\left( {2{{\cos }^2}\dfrac{\theta }{2}} \right) = b{\cos ^2}\dfrac{\theta }{2}$
$ \Rightarrow {a_1} = b{\cos ^2}\dfrac{\theta }{2}$
We have given that ${b_1} = \sqrt {{a_1}b} $
Putting value of ${a_1}$ , we get
\[{b_1} = \sqrt {b \times b{{\cos }^2}\dfrac{\theta }{2}} = \sqrt {{b^2}{{\cos }^2}{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} = b\cos {\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}\]
So value of \[{b_1} = b\cos \dfrac{\theta }{2}\]
Also we have given that \[{a_2} = \dfrac{{{a_1} + {b_1}}}{2}\]putting the value of ${a_1}$ and ${a_2}$ in
${a_2} = \dfrac{{b{{\cos }^2}\dfrac{\theta }{2} + b\cos \dfrac{\theta }{2}}}{2} = \dfrac{{b\cos \dfrac{\theta }{2}\left( {\cos \dfrac{\theta }{2} + 1} \right)}}{2}$
$ \Rightarrow \dfrac{{b\cos \dfrac{\theta }{2} + b{{\cos }^2}\dfrac{\theta }{2}}}{2} = b\cos \dfrac{\theta }{2}{\cos ^2}\dfrac{\theta }{4}$
${b_2} = \sqrt {{a_2}{b_1}} $
\[ \Rightarrow \sqrt {{b^2}{{\cos }^2}\dfrac{\theta }{2}{{\cos }^2}\dfrac{\theta }{4}} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\]
$ \Rightarrow {b_2} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}$
So from the above sequence of ${b_2}$ we can write the value of ${b_3}$
${b_3} = b\cos \dfrac{\theta }{2}.\cos \dfrac{\theta }{4}.\cos \dfrac{\theta }{8}$
So, ${b_n} = b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}\cos \dfrac{\theta }{{16}},........\cos \dfrac{\theta }{{{2^n}}}$
Now ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } bn$
Therefore ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ \[b\cos \dfrac{\theta }{2}\cos \dfrac{\theta }{4}\cos \dfrac{\theta }{8}.......\cos \dfrac{\theta }{{{2^n}}}\]
Now we have $\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$
Therefore $\cos \dfrac{\theta }{2} = \dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}}$
We get ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ $b\dfrac{{\sin \theta }}{{2\sin \dfrac{\theta }{2}}} \times \dfrac{{\sin \dfrac{\theta }{2}}}{{2\sin \dfrac{\theta }{4}}} \times \dfrac{{\sin \dfrac{\theta }{4}}}{{2\sin \dfrac{\theta }{8}}}$
${b_\infty } = \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{{{2^n}\sin \dfrac{\theta }{{{2^n}}}}}$
Now ${b_\infty } = \mathop {\lim }\limits_{x \to \infty } $ $b\dfrac{\theta }{{{2^n}}} \times \dfrac{{\sin \theta }}{{\theta \sin \dfrac{\theta }{{{2^n}}}}}$
$ \Rightarrow \mathop {\lim }\limits_{x \to \infty } \dfrac{{b\sin \theta }}{\theta }.\left( {\dfrac{{{{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}{{\sin {{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}} \right)$
\[ \Rightarrow b\dfrac{{\sin \theta }}{\theta }.\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{\dfrac{\theta }{{{2^n}}}}}{{\sin {{{\raise0.5ex\hbox{$\scriptstyle \theta $}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}}^n}}}} \right)\]
\[ \Rightarrow \dfrac{{b\sin \theta }}{\theta } \times 1\]
$ \Rightarrow {b_\infty } = b\dfrac{{\sin \theta }}{\theta }$
Now $a = b\cos \theta $
\[ \Rightarrow \cos \theta = \dfrac{a}{b}\]
$\sin \theta = \sqrt {1 - {{\cos }^2}\theta } = \sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} $
Also $\cos \theta = \dfrac{\theta }{b}$
$\theta = {\cos ^{ - 1}}\dfrac{a}{b}$
So, \[{b_\infty } = \dfrac{{b\sqrt {1 - \dfrac{{{a^2}}}{{{b^2}}}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}} = \dfrac{{b\sqrt {\dfrac{{{b^2} - {a^2}}}{b}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}\]
\[ \Rightarrow {b_\infty } = \dfrac{{\sqrt {{b^2} - {a^2}} }}{{{{\cos }^{ - 1}}\dfrac{a}{b}}}\]
This is the requested result.
Therefore option $(B)$ is the correct answer.
Note:
Trigonometry is the branch of mathematics concerned with specific functions of angles and this application to calculations. There are six trigonometric functions of angles commonly used in trigonometry. Their names are $\sin e(\sin ),\cos ine(\cos ),$ $\tan gent(\tan ),\cot anget(\cot ),$ $\cot a\sec ant(\sec ),\cos ecant(\cos ec)$.
These trigonometric functions are related to the angle and the ratio of the sides of the triangle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

