
If $A,B and C$ are the angles of a triangle, such that$\sec \left( {A - B} \right)$,$\sec A$ and$\sec \left( {A + B} \right)$are in arithmetic progression, then
A.$\cos e{c^2}A = 2\cos e{c^2}\dfrac{B}{2}$
B.$2se{c^2}A = se{c^2}\dfrac{B}{2}$
C.$2\cos e{c^2}A = \cos e{c^2}\dfrac{B}{2}$
D.$2se{c^2}B = se{c^2}\dfrac{A}{2}$
Answer
471.6k+ views
Hint: First, we shall analyze the given information so that we can able to solve the problem. We are given a condition that the given angles are in arithmetic progression. Generally in Mathematics, the derivative refers to the rate of change of a function with respect to a variable. First, we need to change the given equation for our convenience. To change the equation, we need to apply some suitable trigonometric identities. Then, we need to differentiate the resultant equation.
Formula to be used:
If $a,b$ and $c$ are in arithmetic progression, then $a + c = 2b$
$\sec \theta = \dfrac{1}{{\cos \theta }}$
$\cos (A + B) + \cos (A - B) = 2\cos A\cos B$
$\cos (A - B)\cos (A + B) = {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B$
${\sin ^2}\theta = 1 - \cos \theta $
$\left( {a + b} \right)(a - b) = {a^2} - {b^2}$
$1 + \cos \theta = 2\cos \dfrac{\theta }{2}$
$\cos \theta = \dfrac{1}{{\sec \theta }}$
Complete step by step answer:
It is given that $\sec \left( {A - B} \right),\sec A$ and $\sec \left( {A + B} \right)$ is in arithmetic progression.
Then $2\sec A = \sec \left( {A - B} \right) + \sec (A + B)$ (here we applied $a + c = 2b$ , where $a,b$ and $c$ are in A.P)
$2\sec A = \dfrac{1}{{\cos \left( {A - B} \right)}} + \dfrac{1}{{\cos (A + B)}}$ (Here we used the trigonometric identity $\sec \theta = \dfrac{1}{{\cos \theta }}$ )
$ = \dfrac{{\cos (A + B) + \cos (A - B)}}{{\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \sec A = \dfrac{{\cos (A + B) + \cos (A - B)}}{{2\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{\cos (A + B) + \cos (A - B)}}{{2\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{2\cos A\cos B}}{{2\left[ {{{\cos }^2}A{{\cos }^2}B - {{\sin }^2}A{{\sin }^2}B} \right]}}$ (Here we applied the trigonometric identity $\cos (A + B) + \cos (A - B) = 2\cos A\cos B$ and $\cos (A - B)\cos (A + B) = {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B$ )
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{\cos A\cos B}}{{{{\cos }^2}A{{\cos }^2}B - {{\sin }^2}A{{\sin }^2}B}}$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - \left( {1 - {{\cos }^2}B} \right)\left( {1 - {{\cos }^2}B} \right) = {\cos ^2}A\cos B$ (Here we applied ${\sin ^2}\theta = 1 - \cos \theta $ )
$ \Rightarrow {\cos ^2}A{\cos ^2}B - \left[ {1 - {{\cos }^2}B - {{\cos }^2}A + {{\cos }^2}A{{\cos }^2}B} \right] = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - 1 + {\cos ^2}B + {\cos ^2}A - {\cos ^2}A{\cos ^2}B = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A + {\cos ^2}B - 1 = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A - {\cos ^2}A\cos B = 1 - {\cos ^2}B$
$ \Rightarrow {\cos ^2}A\left( {1 - \cos B} \right) = 1 - {\cos ^2}B$
$ \Rightarrow {\cos ^2}A(1 - \cos B) = \left( {1 - \cos B} \right)(1 + \cos B)$ (Here we used $\left( {a + b} \right)(a - b) = {a^2} - {b^2}$ )
$ \Rightarrow {\cos ^2}A = 1 + \cos B$
$ \Rightarrow {\cos ^2}A = 2{\cos ^2}\dfrac{B}{2}$ (In this step, we applied $1 + \cos \theta = 2\cos \dfrac{\theta }{2}$ )
$ \Rightarrow \dfrac{1}{{{{\sec }^2}A}} = 2\dfrac{1}{{{{\sec }^2}\dfrac{B}{2}}}$ (In this step, we applied $\cos \theta = \dfrac{1}{{\sec \theta }}$ )
$ \Rightarrow {\sec ^2}\dfrac{B}{2} = 2{\sec ^2}A$
Hence $2{\sec ^2}A = {\sec ^2}\dfrac{B}{2}$ and the option $\left( B \right)$ is the correct answer.
Note:
Since we are given that the given angles are in A.P, we need to apply the condition to start the problem. Here we have used this condition if $a,b$ and $c$ are in arithmetic progression, then $a + c = 2b$
When we are asked to find the derivation of the given equation, we need to change the given equation smartly for our convenience. Here we have applied trigonometric identities to change the equation. Then we need to analyze that where we need to apply the derivative formulae and where we need to apply the rule of differentiation while differentiating the given equation.
Formula to be used:
If $a,b$ and $c$ are in arithmetic progression, then $a + c = 2b$
$\sec \theta = \dfrac{1}{{\cos \theta }}$
$\cos (A + B) + \cos (A - B) = 2\cos A\cos B$
$\cos (A - B)\cos (A + B) = {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B$
${\sin ^2}\theta = 1 - \cos \theta $
$\left( {a + b} \right)(a - b) = {a^2} - {b^2}$
$1 + \cos \theta = 2\cos \dfrac{\theta }{2}$
$\cos \theta = \dfrac{1}{{\sec \theta }}$
Complete step by step answer:
It is given that $\sec \left( {A - B} \right),\sec A$ and $\sec \left( {A + B} \right)$ is in arithmetic progression.
Then $2\sec A = \sec \left( {A - B} \right) + \sec (A + B)$ (here we applied $a + c = 2b$ , where $a,b$ and $c$ are in A.P)
$2\sec A = \dfrac{1}{{\cos \left( {A - B} \right)}} + \dfrac{1}{{\cos (A + B)}}$ (Here we used the trigonometric identity $\sec \theta = \dfrac{1}{{\cos \theta }}$ )
$ = \dfrac{{\cos (A + B) + \cos (A - B)}}{{\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \sec A = \dfrac{{\cos (A + B) + \cos (A - B)}}{{2\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{\cos (A + B) + \cos (A - B)}}{{2\cos (A - B)\cos (A + B)}}$
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{2\cos A\cos B}}{{2\left[ {{{\cos }^2}A{{\cos }^2}B - {{\sin }^2}A{{\sin }^2}B} \right]}}$ (Here we applied the trigonometric identity $\cos (A + B) + \cos (A - B) = 2\cos A\cos B$ and $\cos (A - B)\cos (A + B) = {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B$ )
$ \Rightarrow \dfrac{1}{{\cos A}} = \dfrac{{\cos A\cos B}}{{{{\cos }^2}A{{\cos }^2}B - {{\sin }^2}A{{\sin }^2}B}}$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - {\sin ^2}A{\sin ^2}B = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - \left( {1 - {{\cos }^2}B} \right)\left( {1 - {{\cos }^2}B} \right) = {\cos ^2}A\cos B$ (Here we applied ${\sin ^2}\theta = 1 - \cos \theta $ )
$ \Rightarrow {\cos ^2}A{\cos ^2}B - \left[ {1 - {{\cos }^2}B - {{\cos }^2}A + {{\cos }^2}A{{\cos }^2}B} \right] = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A{\cos ^2}B - 1 + {\cos ^2}B + {\cos ^2}A - {\cos ^2}A{\cos ^2}B = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A + {\cos ^2}B - 1 = {\cos ^2}A\cos B$
$ \Rightarrow {\cos ^2}A - {\cos ^2}A\cos B = 1 - {\cos ^2}B$
$ \Rightarrow {\cos ^2}A\left( {1 - \cos B} \right) = 1 - {\cos ^2}B$
$ \Rightarrow {\cos ^2}A(1 - \cos B) = \left( {1 - \cos B} \right)(1 + \cos B)$ (Here we used $\left( {a + b} \right)(a - b) = {a^2} - {b^2}$ )
$ \Rightarrow {\cos ^2}A = 1 + \cos B$
$ \Rightarrow {\cos ^2}A = 2{\cos ^2}\dfrac{B}{2}$ (In this step, we applied $1 + \cos \theta = 2\cos \dfrac{\theta }{2}$ )
$ \Rightarrow \dfrac{1}{{{{\sec }^2}A}} = 2\dfrac{1}{{{{\sec }^2}\dfrac{B}{2}}}$ (In this step, we applied $\cos \theta = \dfrac{1}{{\sec \theta }}$ )
$ \Rightarrow {\sec ^2}\dfrac{B}{2} = 2{\sec ^2}A$
Hence $2{\sec ^2}A = {\sec ^2}\dfrac{B}{2}$ and the option $\left( B \right)$ is the correct answer.
Note:
Since we are given that the given angles are in A.P, we need to apply the condition to start the problem. Here we have used this condition if $a,b$ and $c$ are in arithmetic progression, then $a + c = 2b$
When we are asked to find the derivation of the given equation, we need to change the given equation smartly for our convenience. Here we have applied trigonometric identities to change the equation. Then we need to analyze that where we need to apply the derivative formulae and where we need to apply the rule of differentiation while differentiating the given equation.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

