
If ${a^b} = 4 - ab$ and ${b^a} = 1$, where a and are b positive integers, find a.
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. 1}} \\
{\text{C}}{\text{. 2}} \\
{\text{D}}{\text{. 3}} \\
$
Answer
623.7k+ views
Hint- A number of the form ${b^a}$ can be equal to one only if either b = 1 or a = 0.
In this question we have been given ${a^b} = 4 - ab$ and ${b^a} = 1$
And we know that ${b^a}$ can be equal to one only if either $b = 1$ or $a = 0$.
But we are given that $a$ and are $b$ positive integers
So, $a \ne 0$ $ \Rightarrow b = 1$
Now if we put $b = 1$ in the equation ${a^b} = 4 - ab$
We get,
${a^1} = 4 - a\left( 1 \right)$
$ \Rightarrow 2a = 4$
So, $a = 2$
Here the correct answer is option (C).
Note- In these types of questions, the most important part is the domain of our variables, most of us miss this point and get struck as they give two answers. So, all the given constraints should be taken into consideration while solving the question.
In this question we have been given ${a^b} = 4 - ab$ and ${b^a} = 1$
And we know that ${b^a}$ can be equal to one only if either $b = 1$ or $a = 0$.
But we are given that $a$ and are $b$ positive integers
So, $a \ne 0$ $ \Rightarrow b = 1$
Now if we put $b = 1$ in the equation ${a^b} = 4 - ab$
We get,
${a^1} = 4 - a\left( 1 \right)$
$ \Rightarrow 2a = 4$
So, $a = 2$
Here the correct answer is option (C).
Note- In these types of questions, the most important part is the domain of our variables, most of us miss this point and get struck as they give two answers. So, all the given constraints should be taken into consideration while solving the question.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


