
If ${a^2} + {b^2} + {c^2} = - 2$ and $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$. Then, $f(x)$ is a polynomial of degree
(A)$2$
(B)$3$
(C)$4$
(D)$5$
Answer
563.4k+ views
Hint:
The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial $6{x^4} + 2{x^3} + 1$ is $4$. In the given
question, we must solve $f\left( x \right)$ by using the properties of determinants to find its degree.
Complete step by step solution:
Given, $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Solve the $f(x)$ by using elementary row and column transformations.
Applying ${C_1} \to {C_1} + {C_2} + {C_3}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now put ${a^2} + {b^2} + {c^2} = - 2$ (Given)
$\therefore $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now applying ${R_2} \to {R_2} - {R_1}$ and${R_3} \to {R_3} - {R_1}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\
{1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 + {b^2}x - x - {b^2}x}&0 \\
0&0&{1 + {c^2}x - x - {c^2}x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 - x}&0 \\
0&0&{1 - x}
\end{array}} \right|$
Now expanding the determinant $f(x)$ along ${C_1}$, we obtain
$ \Rightarrow f(x) = 1\left\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\}$
$ \Rightarrow f(x) = {\left( {1 - x} \right)^2}$
$ \Rightarrow f(x) = 1 + {x^2} - 2x$
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of $x$ is $2$.
Therefore, the degree of the polynomial $f\left( x \right)$ is $2$.
Hence, option (A) is the correct answer.
Note:
While solving the determinant , try to make three $1's$ in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.
The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial $6{x^4} + 2{x^3} + 1$ is $4$. In the given
question, we must solve $f\left( x \right)$ by using the properties of determinants to find its degree.
Complete step by step solution:
Given, $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Solve the $f(x)$ by using elementary row and column transformations.
Applying ${C_1} \to {C_1} + {C_2} + {C_3}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now put ${a^2} + {b^2} + {c^2} = - 2$ (Given)
$\therefore $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now applying ${R_2} \to {R_2} - {R_1}$ and${R_3} \to {R_3} - {R_1}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\
{1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 + {b^2}x - x - {b^2}x}&0 \\
0&0&{1 + {c^2}x - x - {c^2}x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 - x}&0 \\
0&0&{1 - x}
\end{array}} \right|$
Now expanding the determinant $f(x)$ along ${C_1}$, we obtain
$ \Rightarrow f(x) = 1\left\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\}$
$ \Rightarrow f(x) = {\left( {1 - x} \right)^2}$
$ \Rightarrow f(x) = 1 + {x^2} - 2x$
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of $x$ is $2$.
Therefore, the degree of the polynomial $f\left( x \right)$ is $2$.
Hence, option (A) is the correct answer.
Note:
While solving the determinant , try to make three $1's$ in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

