
If ${a^2} + {b^2} + {c^2} = - 2$ and $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$. Then, $f(x)$ is a polynomial of degree
(A)$2$
(B)$3$
(C)$4$
(D)$5$
Answer
564.3k+ views
Hint:
The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial $6{x^4} + 2{x^3} + 1$ is $4$. In the given
question, we must solve $f\left( x \right)$ by using the properties of determinants to find its degree.
Complete step by step solution:
Given, $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Solve the $f(x)$ by using elementary row and column transformations.
Applying ${C_1} \to {C_1} + {C_2} + {C_3}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now put ${a^2} + {b^2} + {c^2} = - 2$ (Given)
$\therefore $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now applying ${R_2} \to {R_2} - {R_1}$ and${R_3} \to {R_3} - {R_1}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\
{1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 + {b^2}x - x - {b^2}x}&0 \\
0&0&{1 + {c^2}x - x - {c^2}x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 - x}&0 \\
0&0&{1 - x}
\end{array}} \right|$
Now expanding the determinant $f(x)$ along ${C_1}$, we obtain
$ \Rightarrow f(x) = 1\left\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\}$
$ \Rightarrow f(x) = {\left( {1 - x} \right)^2}$
$ \Rightarrow f(x) = 1 + {x^2} - 2x$
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of $x$ is $2$.
Therefore, the degree of the polynomial $f\left( x \right)$ is $2$.
Hence, option (A) is the correct answer.
Note:
While solving the determinant , try to make three $1's$ in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.
The degree of a polynomial is the highest power of the variable in a polynomial
expression. For ex- The degree of a polynomial $6{x^4} + 2{x^3} + 1$ is $4$. In the given
question, we must solve $f\left( x \right)$ by using the properties of determinants to find its degree.
Complete step by step solution:
Given, $f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Solve the $f(x)$ by using elementary row and column transformations.
Applying ${C_1} \to {C_1} + {C_2} + {C_3}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + \left( {1 + {b^2}} \right)x + \left( {1 + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + 1 + {b^2}x + \left( {1 + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{\left( {1 + {a^2}} \right)x + \left( {1 + {b^2}} \right)x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + {a^2}x + x + {b^2}x + x + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + 1 + {b^2}x + x + {c^2}x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{x + {a^2}x + x + {b^2}x + 1 + {c^2}x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( {{a^2} + {b^2} + {c^2}} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now put ${a^2} + {b^2} + {c^2} = - 2$ (Given)
$\therefore $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x + \left( { - 2} \right)x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
{1 + 2x - 2x}&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
$ \Rightarrow $$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
1&{1 + {b^2}x}&{\left( {1 + {c^2}} \right)x} \\
1&{\left( {1 + {b^2}} \right)x}&{1 + {c^2}x}
\end{array}} \right|$
Now applying ${R_2} \to {R_2} - {R_1}$ and${R_3} \to {R_3} - {R_1}$ to $f(x)$, we get
$f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
{1 - 1}&{1 + {b^2}x - \left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x - \left( {1 + {c^2}} \right)x} \\
{1 - 1}&{\left( {1 + {b^2}} \right)x - \left( {1 + {b^2}} \right)x}&{1 + {c^2}x - \left( {1 + {c^2}} \right)x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 + {b^2}x - x - {b^2}x}&0 \\
0&0&{1 + {c^2}x - x - {c^2}x}
\end{array}} \right|$
$ \Rightarrow f(x) = \left| {\begin{array}{*{20}{l}}
1&{\left( {1 + {b^2}} \right)x}&{\left( {1 + {c^2}} \right)x} \\
0&{1 - x}&0 \\
0&0&{1 - x}
\end{array}} \right|$
Now expanding the determinant $f(x)$ along ${C_1}$, we obtain
$ \Rightarrow f(x) = 1\left\{ {\left( {1 - x} \right)\left( {1 - x} \right) - \left( {0 \times 0} \right)} \right\}$
$ \Rightarrow f(x) = {\left( {1 - x} \right)^2}$
$ \Rightarrow f(x) = 1 + {x^2} - 2x$
As we know that the degree of a polynomial is the highest power of the variable in a polynomial expression. Here the highest power of $x$ is $2$.
Therefore, the degree of the polynomial $f\left( x \right)$ is $2$.
Hence, option (A) is the correct answer.
Note:
While solving the determinant , try to make three $1's$ in any row or column, so that determinant can be solved easily. Also, you must have the knowledge to apply the properties of determinant while solving it.
Recently Updated Pages
Why do we need standard unit measurement class 11 physics CBSE

Which one of the following is a possibility for most class 11 biology CBSE

The intramolecular hydrogen bonding in compound leads class 11 chemistry CBSE

Assertion Krebs cycle is called tricarboxylic acid class 11 biology CBSE

The correct sequence of the development process in class 11 biology CBSE

What is stratification in an ecosystem class 11 biology CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

