
If \[{{A}_{1}},{{A}_{2}};{{G}_{1}},{{G}_{2}}\] and \[{{H}_{1}},{{H}_{2}}\] be two A.Ms, G.Ms and H.Ms, between two quantities a and b then. Prove that, \[{{A}_{1}}{{H}_{2}}={{A}_{2}}{{H}_{1}}={{G}_{1}}{{G}_{2}}=ab\].
Answer
598.2k+ views
Hint:Find the equation of \[{{n}^{th}}\] term of AP, HP and GP. Thus find the values \[{{A}_{1}},{{A}_{2}},{{H}_{1}},{{H}_{2}},{{G}_{1}}\] and \[{{G}_{2}}\]. Thus find \[{{A}_{1}}{{H}_{2}},{{A}_{2}}H,{{G}_{1}}{{G}_{2}}\] and their value should be equal to ab.
Complete step-by-step answer:
From the equation \[{{A}_{1}},{{A}_{2}}\] are the A.Ms, \[{{H}_{1}}\] and \[{{H}_{2}}\] are the H.Ms and \[{{G}_{1}},{{G}_{2}}\] are \[G.Ms\], where A.M means arithmetic mean, G.M means geometric mean and H.M means harmonic mean.
We know that the \[{{n}^{th}}\] term of an AP is given by,
\[{{T}_{n}}=a+\left( n-1 \right)d\]
Where a is the first term and d is the common difference.
Similarly, the \[{{n}^{th}}\] term of a GP is given by
\[{{T}_{n}}=a{{r}^{n-1}}\], where r = common ratio.
We have been given two quantities a and b.
Hence, we can say that \[a,{{A}_{1}},{{A}_{2}},b\] are in AP.
Hence there are 4 terms i.e. n = 4.
\[{{T}_{n}}=a+\left( n-1 \right)d\]
Put, \[{{T}_{n}}=b\] and \[n=4\] in the above expression.
\[\begin{align}
& \therefore b=a+\left( 4-1 \right)d \\
& b=a+3d,a=b-3d \\
& b-a=3d \\
& d=\dfrac{b-a}{3} \\
\end{align}\]
Hence we got the common difference (d) of the AP as \[\left( \dfrac{b-a}{3} \right)\].
Now the first term here is a \[{{2}^{nd}}\] term is \[{{A}_{1}}\].
\[\begin{align}
& \therefore {{A}_{1}}=a+d=a+\left( \dfrac{b-a}{3} \right) \\
& {{A}_{1}}=\dfrac{3a+b-a}{3}=\dfrac{2a+b}{3} \\
\end{align}\]
Hence, we got the \[{{2}^{nd}}\] term, \[{{A}_{1}}=\dfrac{2a+b}{3}\].
Similarly, \[{{3}^{rd}}\] term, \[{{A}_{2}}=a+2d\]
\[\begin{align}
& {{A}_{2}}=a+2\left( \dfrac{b-a}{3} \right)=\dfrac{3a+2b-2a}{3} \\
& {{A}_{2}}=\dfrac{a+2b}{3} \\
\end{align}\]
\[\therefore \] The \[{{3}^{rd}}\] term of AP, \[{{A}_{2}}=\dfrac{a+2b}{3}\].
Hence, \[a,{{A}_{1}},{{A}_{2}},b\] are in AP.
\[\begin{align}
& a=b-3d \\
& {{A}_{1}}=\dfrac{2a+b}{3} \\
& {{A}_{2}}=\dfrac{a+2b}{3} \\
\end{align}\]
Again we have \[a,{{G}_{1}},{{G}_{2}},b\] in GP.
\[{{T}_{n}}=a{{r}^{n-1}}\], put n = 4 and \[{{T}_{n}}=b\].
\[\begin{align}
& \therefore b=a{{r}^{4-1}}=a{{r}^{3}} \\
& b=a{{r}^{3}} \\
& {{r}^{3}}=\dfrac{b}{a}\Rightarrow r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Hence, we got the common difference of GP as \[{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\].
Now, \[{{G}_{1}}=ar\], which is the \[{{2}^{nd}}\] term.
\[\begin{align}
& {{G}_{1}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}=\dfrac{a}{{{a}^{\dfrac{1}{3}}}}.{{b}^{\dfrac{1}{3}}}=\left( {{a}^{1-\dfrac{1}{3}}} \right).{{b}^{\dfrac{1}{3}}} \\
& {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\
\end{align}\]
Hence, we got the \[{{2}^{nd}}\] term of GP as, \[{{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}}\].
Similarly, \[{{3}^{rd}}\] term, \[{{G}_{2}}=a{{r}^{2}}\]
\[\begin{align}
& {{G}_{2}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}=\dfrac{a}{{{a}^{\dfrac{2}{3}}}}.{{b}^{\dfrac{2}{3}}} \\
& {{G}_{2}}=\left( {{a}^{1-\dfrac{2}{3}}} \right).{{b}^{\dfrac{2}{3}}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\
\end{align}\]
\[\therefore {{2}^{nd}}\] term of GP, \[{{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}}\].
Hence, \[a,{{G}_{1}},{{G}_{2}},b\] are in GP.
\[\begin{align}
& a=\dfrac{b}{{{r}^{3}}} \\
& {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\
& {{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\
\end{align}\]
Now we have \[a,{{H}_{1}},{{H}_{2}},b\] in H.P.
Hence, HP \[={{\left( \dfrac{1}{n} \right)}^{th}}\] term of AP. Put, \[{{T}_{n}}=b\] and n = 4.
\[\begin{align}
& \dfrac{1}{b}=\dfrac{1}{a}+\left( 4-1 \right)d \\
& \dfrac{1}{b}=\dfrac{1}{a}+3d\Rightarrow 3d=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab} \\
& \therefore d=\dfrac{a-b}{3ab} \\
\end{align}\]
Now to get the \[{{2}^{nd}}\] term \[{{H}_{1}}\],
\[\begin{align}
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+d=\dfrac{1}{a}+\dfrac{a-b}{3ab} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+\dfrac{1}{3b}-\dfrac{1}{3a} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{3b+a-b}{3ab}=\dfrac{a+2b}{3ab} \\
& \therefore {{H}_{1}}=\dfrac{3ab}{a+2b} \\
\end{align}\]
Similarly, \[{{3}^{rd}}\] term of H.M \[{{H}_{2}}\]
\[\begin{align}
& \dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2d=\dfrac{1}{a}+\dfrac{2}{3b}-\dfrac{2}{3a} \\
& \dfrac{1}{{{H}_{2}}}=\dfrac{3b+2a-2b}{3ab}=\dfrac{b+2a}{3ab} \\
& \therefore {{H}_{2}}=\dfrac{3ab}{2a+b} \\
\end{align}\]
Now let us find the value of \[{{A}_{1}}{{H}_{2}},{{A}_{2}}{{H}_{2}}\] and \[{{G}_{1}},{{G}_{2}}\].
\[\begin{align}
& {{A}_{1}}{{H}_{2}}=\left( \dfrac{2a+b}{3} \right)\times \left( \dfrac{3ab}{2a+b} \right)=ab \\
& {{A}_{2}}{{H}_{1}}=\left( \dfrac{a+2b}{3} \right)\times \left( \dfrac{3ab}{a+2b} \right)=ab \\
& {{G}_{1}}{{G}_{2}}={{a}^{\dfrac{2}{3}}}{{b}^{\dfrac{1}{3}}}\times {{a}^{\dfrac{1}{3}}}{{b}^{\dfrac{2}{3}}}={{a}^{\left( \dfrac{2}{3}+\dfrac{1}{3} \right)}}.{{b}^{\left( \dfrac{1}{3}+\dfrac{2}{3} \right)}} \\
& {{G}_{1}}{{G}_{2}}={{a}^{1}}.{{b}^{1}}=ab \\
\end{align}\]
Hence from the above, we can say that,
\[{{A}_{1}}{{H}_{2}}={{A}_{2}}{{H}_{1}}={{G}_{1}}{{G}_{2}}=ab\]
Hence, we have proved the expression.
Note: To solve a question like this you should know the basics of AP, GP and HP. Thus find the terms to prove the expression that have been given. Remember the formula to find the \[{{n}^{th}}\] term in AP, GP and HP.
Complete step-by-step answer:
From the equation \[{{A}_{1}},{{A}_{2}}\] are the A.Ms, \[{{H}_{1}}\] and \[{{H}_{2}}\] are the H.Ms and \[{{G}_{1}},{{G}_{2}}\] are \[G.Ms\], where A.M means arithmetic mean, G.M means geometric mean and H.M means harmonic mean.
We know that the \[{{n}^{th}}\] term of an AP is given by,
\[{{T}_{n}}=a+\left( n-1 \right)d\]
Where a is the first term and d is the common difference.
Similarly, the \[{{n}^{th}}\] term of a GP is given by
\[{{T}_{n}}=a{{r}^{n-1}}\], where r = common ratio.
We have been given two quantities a and b.
Hence, we can say that \[a,{{A}_{1}},{{A}_{2}},b\] are in AP.
Hence there are 4 terms i.e. n = 4.
\[{{T}_{n}}=a+\left( n-1 \right)d\]
Put, \[{{T}_{n}}=b\] and \[n=4\] in the above expression.
\[\begin{align}
& \therefore b=a+\left( 4-1 \right)d \\
& b=a+3d,a=b-3d \\
& b-a=3d \\
& d=\dfrac{b-a}{3} \\
\end{align}\]
Hence we got the common difference (d) of the AP as \[\left( \dfrac{b-a}{3} \right)\].
Now the first term here is a \[{{2}^{nd}}\] term is \[{{A}_{1}}\].
\[\begin{align}
& \therefore {{A}_{1}}=a+d=a+\left( \dfrac{b-a}{3} \right) \\
& {{A}_{1}}=\dfrac{3a+b-a}{3}=\dfrac{2a+b}{3} \\
\end{align}\]
Hence, we got the \[{{2}^{nd}}\] term, \[{{A}_{1}}=\dfrac{2a+b}{3}\].
Similarly, \[{{3}^{rd}}\] term, \[{{A}_{2}}=a+2d\]
\[\begin{align}
& {{A}_{2}}=a+2\left( \dfrac{b-a}{3} \right)=\dfrac{3a+2b-2a}{3} \\
& {{A}_{2}}=\dfrac{a+2b}{3} \\
\end{align}\]
\[\therefore \] The \[{{3}^{rd}}\] term of AP, \[{{A}_{2}}=\dfrac{a+2b}{3}\].
Hence, \[a,{{A}_{1}},{{A}_{2}},b\] are in AP.
\[\begin{align}
& a=b-3d \\
& {{A}_{1}}=\dfrac{2a+b}{3} \\
& {{A}_{2}}=\dfrac{a+2b}{3} \\
\end{align}\]
Again we have \[a,{{G}_{1}},{{G}_{2}},b\] in GP.
\[{{T}_{n}}=a{{r}^{n-1}}\], put n = 4 and \[{{T}_{n}}=b\].
\[\begin{align}
& \therefore b=a{{r}^{4-1}}=a{{r}^{3}} \\
& b=a{{r}^{3}} \\
& {{r}^{3}}=\dfrac{b}{a}\Rightarrow r={{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}} \\
\end{align}\]
Hence, we got the common difference of GP as \[{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}\].
Now, \[{{G}_{1}}=ar\], which is the \[{{2}^{nd}}\] term.
\[\begin{align}
& {{G}_{1}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{1}{3}}}=\dfrac{a}{{{a}^{\dfrac{1}{3}}}}.{{b}^{\dfrac{1}{3}}}=\left( {{a}^{1-\dfrac{1}{3}}} \right).{{b}^{\dfrac{1}{3}}} \\
& {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\
\end{align}\]
Hence, we got the \[{{2}^{nd}}\] term of GP as, \[{{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}}\].
Similarly, \[{{3}^{rd}}\] term, \[{{G}_{2}}=a{{r}^{2}}\]
\[\begin{align}
& {{G}_{2}}=a{{\left( \dfrac{b}{a} \right)}^{\dfrac{2}{3}}}=\dfrac{a}{{{a}^{\dfrac{2}{3}}}}.{{b}^{\dfrac{2}{3}}} \\
& {{G}_{2}}=\left( {{a}^{1-\dfrac{2}{3}}} \right).{{b}^{\dfrac{2}{3}}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\
\end{align}\]
\[\therefore {{2}^{nd}}\] term of GP, \[{{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}}\].
Hence, \[a,{{G}_{1}},{{G}_{2}},b\] are in GP.
\[\begin{align}
& a=\dfrac{b}{{{r}^{3}}} \\
& {{G}_{1}}={{a}^{\dfrac{2}{3}}}.{{b}^{\dfrac{1}{3}}} \\
& {{G}_{2}}={{a}^{\dfrac{1}{3}}}.{{b}^{\dfrac{2}{3}}} \\
\end{align}\]
Now we have \[a,{{H}_{1}},{{H}_{2}},b\] in H.P.
Hence, HP \[={{\left( \dfrac{1}{n} \right)}^{th}}\] term of AP. Put, \[{{T}_{n}}=b\] and n = 4.
\[\begin{align}
& \dfrac{1}{b}=\dfrac{1}{a}+\left( 4-1 \right)d \\
& \dfrac{1}{b}=\dfrac{1}{a}+3d\Rightarrow 3d=\dfrac{1}{b}-\dfrac{1}{a}=\dfrac{a-b}{ab} \\
& \therefore d=\dfrac{a-b}{3ab} \\
\end{align}\]
Now to get the \[{{2}^{nd}}\] term \[{{H}_{1}}\],
\[\begin{align}
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+d=\dfrac{1}{a}+\dfrac{a-b}{3ab} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{1}{a}+\dfrac{1}{3b}-\dfrac{1}{3a} \\
& \dfrac{1}{{{H}_{1}}}=\dfrac{3b+a-b}{3ab}=\dfrac{a+2b}{3ab} \\
& \therefore {{H}_{1}}=\dfrac{3ab}{a+2b} \\
\end{align}\]
Similarly, \[{{3}^{rd}}\] term of H.M \[{{H}_{2}}\]
\[\begin{align}
& \dfrac{1}{{{H}_{2}}}=\dfrac{1}{a}+2d=\dfrac{1}{a}+\dfrac{2}{3b}-\dfrac{2}{3a} \\
& \dfrac{1}{{{H}_{2}}}=\dfrac{3b+2a-2b}{3ab}=\dfrac{b+2a}{3ab} \\
& \therefore {{H}_{2}}=\dfrac{3ab}{2a+b} \\
\end{align}\]
Now let us find the value of \[{{A}_{1}}{{H}_{2}},{{A}_{2}}{{H}_{2}}\] and \[{{G}_{1}},{{G}_{2}}\].
\[\begin{align}
& {{A}_{1}}{{H}_{2}}=\left( \dfrac{2a+b}{3} \right)\times \left( \dfrac{3ab}{2a+b} \right)=ab \\
& {{A}_{2}}{{H}_{1}}=\left( \dfrac{a+2b}{3} \right)\times \left( \dfrac{3ab}{a+2b} \right)=ab \\
& {{G}_{1}}{{G}_{2}}={{a}^{\dfrac{2}{3}}}{{b}^{\dfrac{1}{3}}}\times {{a}^{\dfrac{1}{3}}}{{b}^{\dfrac{2}{3}}}={{a}^{\left( \dfrac{2}{3}+\dfrac{1}{3} \right)}}.{{b}^{\left( \dfrac{1}{3}+\dfrac{2}{3} \right)}} \\
& {{G}_{1}}{{G}_{2}}={{a}^{1}}.{{b}^{1}}=ab \\
\end{align}\]
Hence from the above, we can say that,
\[{{A}_{1}}{{H}_{2}}={{A}_{2}}{{H}_{1}}={{G}_{1}}{{G}_{2}}=ab\]
Hence, we have proved the expression.
Note: To solve a question like this you should know the basics of AP, GP and HP. Thus find the terms to prove the expression that have been given. Remember the formula to find the \[{{n}^{th}}\] term in AP, GP and HP.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

