
If ${{a}_{1}},{{a}_{2}},..{{a}_{n}}$ are positive real numbers whose product is a fixed number c, then the minimum value of ${{a}_{1}}+{{a}_{2}}+...{{a}_{n-1}}+2{{a}_{n}}$.
A. $n{{\left( 2c \right)}^{1/n}}$
B. $(n+1){{c}^{1/n}}$
C. $2n{{c}^{1/n}}$
D. $(n+1){{(2c)}^{1/n}}$
Answer
525.3k+ views
Hint: The given problem statement is very simple: you just need to apply basic logic with that you also need to apply the concept of the arithmetic mean and geometric mean. Now, you can simply solve the problem statement. So, let’s see what will be the approach for the given problem statement.
Step-By-Step Solution:
The given problem statement is to find the minimum value of${{a}_{1}}+{{a}_{2}}+...{{a}_{n-1}}+2{{a}_{n}}$, when ${{a}_{1}},{{a}_{2}},..{{a}_{n}}$are positive real numbers whose product is a fixed number c.
So, we have ${{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}=c$
Now, we will multiply both sides by 2 in the above equation, that means, we get,
$\Rightarrow {{a}_{1}},{{a}_{2}},{{a}_{3}},....,2{{a}_{n}}=2c$… (i)
As we know that for n positive numbers the arithmetic mean is greater than or equal to geometric mean, that means, we get,
Arithmetic Mean $\ge $ Geometric Mean
$\Rightarrow \dfrac{{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}}{n}\ge \sqrt[n]{{{a}_{1}},{{a}_{2}},{{a}_{3}},....(2{{a}_{n}})}$
From the equation (i), we can get,
$\Rightarrow \dfrac{{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}}{n}\ge \sqrt[n]{2c}$
Now, we will take the n from left-hand side to right-hand side and it will be in the form of multiplication on the right-hand side. Also, we will rearrange n square root to$\dfrac{1}{n}$, that means, we get,
$\Rightarrow {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}\ge n.{{(2c)}^{\dfrac{1}{n}}}$
Therefore, we get the minimum value of${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n-1}}+2{{a}_{n}}$ is $n.{{(2c)}^{\dfrac{1}{n}}}$.
So, the correct answer is option A.
Note:
So, from the given problem statement we learnt the concept of the arithmetic mean and geometric mean. We just need to note that whenever there are n positive numbers at that point of time the arithmetic mean is greater than or equal to the geometric mean.
Step-By-Step Solution:
The given problem statement is to find the minimum value of${{a}_{1}}+{{a}_{2}}+...{{a}_{n-1}}+2{{a}_{n}}$, when ${{a}_{1}},{{a}_{2}},..{{a}_{n}}$are positive real numbers whose product is a fixed number c.
So, we have ${{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}=c$
Now, we will multiply both sides by 2 in the above equation, that means, we get,
$\Rightarrow {{a}_{1}},{{a}_{2}},{{a}_{3}},....,2{{a}_{n}}=2c$… (i)
As we know that for n positive numbers the arithmetic mean is greater than or equal to geometric mean, that means, we get,
Arithmetic Mean $\ge $ Geometric Mean
$\Rightarrow \dfrac{{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}}{n}\ge \sqrt[n]{{{a}_{1}},{{a}_{2}},{{a}_{3}},....(2{{a}_{n}})}$
From the equation (i), we can get,
$\Rightarrow \dfrac{{{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}}{n}\ge \sqrt[n]{2c}$
Now, we will take the n from left-hand side to right-hand side and it will be in the form of multiplication on the right-hand side. Also, we will rearrange n square root to$\dfrac{1}{n}$, that means, we get,
$\Rightarrow {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+.....+{{a}_{n-1}}+2{{a}_{n}}\ge n.{{(2c)}^{\dfrac{1}{n}}}$
Therefore, we get the minimum value of${{a}_{1}}+{{a}_{2}}+{{a}_{3}}+......{{a}_{n-1}}+2{{a}_{n}}$ is $n.{{(2c)}^{\dfrac{1}{n}}}$.
So, the correct answer is option A.
Note:
So, from the given problem statement we learnt the concept of the arithmetic mean and geometric mean. We just need to note that whenever there are n positive numbers at that point of time the arithmetic mean is greater than or equal to the geometric mean.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

