
If $ {a_1},{a_2},...,{a_n} $ are in arithmetic progression, where $ {a_i} > 0 $ for all \[\;i\] . Then,
$ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
A. $ \dfrac{{{n^2}\left( {n + 1} \right)}}{2} $
B. $ \dfrac{{\left( {n - 1} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
C. $ \dfrac{{n\left( {n - 1} \right)}}{2} $
D. None of these
Answer
512.4k+ views
Hint: An arithmetic sequence or arithmetic progression is defined as a mathematical sequence in which the difference between two consecutive terms is always a constant. An arithmetic progression is abbreviated as A.P. We also need to learn the three important terms, which are as follows.
A common difference $ \left( d \right) $ is the difference between the first two terms.
$ {n^{th}} $ term \[({a_n})\]
And, Sum of the first $ n $ terms \[({S_n})\]
Formula to be used:
a) The formula to calculate the $ {n^{th}} $ term of the given arithmetic progression is as follows.
\[{a_n} = a + \left( {n - 1} \right)d\]
Where, $ a $ denotes the first term, $ d $ denotes the common difference, $ n $ is the number of terms, and $ {a_n} $ is the $ {n^{th}} $ term of the given arithmetic progression.
b) We know that \[{a_n} = a + \left( {n - 1} \right)d\]
\[{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d\]
c)) $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $
Complete step by step answer:
We are given that $ {a_1},{a_2},...,{a_n} $ are in arithmetic progression, where $ {a_i} > 0 $ for all \[\;i\] .
Hence, the common difference $ d $ is given by \[{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d\]
Multiplying by a minus sign, we get
\[{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d\] ………. $ \left( 1 \right) $
Now, we need to calculate $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
We shall rationalize the denominator of the above expression.
\[\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} \times \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\sqrt {{a_1}} - \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} \times \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\sqrt {{a_2}} - \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} \times \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}\] \[ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\left( {\sqrt {{a_1}} + \sqrt {{a_2}} } \right)\left( {\sqrt {{a_1}} - \sqrt {{a_2}} } \right)}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\left( {\sqrt {{a_2}} + \sqrt {{a_3}} } \right)\left( {\sqrt {{a_2}} - \sqrt {{a_3}} } \right)}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\left( {\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} } \right)\left( {\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right)}}\]
Here, we shall apply the formula $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $ on the denominators of the right-hand side equation.
\[\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_2}} } \right)}^2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{{\left( {\sqrt {{a_2}} } \right)}^2} - {{\left( {\sqrt {{a_3}} } \right)}^2}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{{\left( {\sqrt {{a_{n - 1}}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}}\] \[ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}}\]
Now, we shall apply the equation $ \left( 1 \right) $ above.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} + ..... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right) $
$ = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} } \right) $
We shall rationalize the numerator of the above expression.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} \times \dfrac{{\sqrt {{a_1}} + \sqrt {{a_n}} }}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
Here, we shall apply the formula $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $ on the numerators of the right-hand side equation.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
$ = \dfrac{1}{{ - d}}\left( {\dfrac{{{a_1} - {a_n}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $ ……… $ \left( 2 \right) $
Applying the \[a - {a_n} = - \left( {n - 1} \right)d\] formula in $ \left( 2 \right) $ we get,
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{ - \left( {n - 1} \right)d}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
$ = \dfrac{{\left( {n - 1} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Hence, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
So, the correct answer is “Option B”.
Note: A common difference $ \left( d \right) $ is the difference between the first two terms.
Hence, the common difference $ d $ is given by \[{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d\]
Multiplying by a minus sign, we get
\[{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d\]
We know that \[{a_n} = a + \left( {n - 1} \right)d\]
\[{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d\]
These are the required formulae to obtain the answer. These are derived from the original formulae for our convenience.
Hence, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
A common difference $ \left( d \right) $ is the difference between the first two terms.
$ {n^{th}} $ term \[({a_n})\]
And, Sum of the first $ n $ terms \[({S_n})\]
Formula to be used:
a) The formula to calculate the $ {n^{th}} $ term of the given arithmetic progression is as follows.
\[{a_n} = a + \left( {n - 1} \right)d\]
Where, $ a $ denotes the first term, $ d $ denotes the common difference, $ n $ is the number of terms, and $ {a_n} $ is the $ {n^{th}} $ term of the given arithmetic progression.
b) We know that \[{a_n} = a + \left( {n - 1} \right)d\]
\[{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d\]
c)) $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $
Complete step by step answer:
We are given that $ {a_1},{a_2},...,{a_n} $ are in arithmetic progression, where $ {a_i} > 0 $ for all \[\;i\] .
Hence, the common difference $ d $ is given by \[{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d\]
Multiplying by a minus sign, we get
\[{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d\] ………. $ \left( 1 \right) $
Now, we need to calculate $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
We shall rationalize the denominator of the above expression.
\[\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} \times \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\sqrt {{a_1}} - \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} \times \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\sqrt {{a_2}} - \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} \times \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}\] \[ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{\left( {\sqrt {{a_1}} + \sqrt {{a_2}} } \right)\left( {\sqrt {{a_1}} - \sqrt {{a_2}} } \right)}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{\left( {\sqrt {{a_2}} + \sqrt {{a_3}} } \right)\left( {\sqrt {{a_2}} - \sqrt {{a_3}} } \right)}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{\left( {\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} } \right)\left( {\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right)}}\]
Here, we shall apply the formula $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $ on the denominators of the right-hand side equation.
\[\dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_2}} } \right)}^2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{{\left( {\sqrt {{a_2}} } \right)}^2} - {{\left( {\sqrt {{a_3}} } \right)}^2}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{{\left( {\sqrt {{a_{n - 1}}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}}\] \[ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}}\]
Now, we shall apply the equation $ \left( 1 \right) $ above.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + ..... + \dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} + ..... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} } \right) $
$ = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} } \right) $
We shall rationalize the numerator of the above expression.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\sqrt {{a_1}} - \sqrt {{a_n}} \times \dfrac{{\sqrt {{a_1}} + \sqrt {{a_n}} }}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
Here, we shall apply the formula $ \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} $ on the numerators of the right-hand side equation.
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{{{\left( {\sqrt {{a_1}} } \right)}^2} - {{\left( {\sqrt {{a_n}} } \right)}^2}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
$ = \dfrac{1}{{ - d}}\left( {\dfrac{{{a_1} - {a_n}}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $ ……… $ \left( 2 \right) $
Applying the \[a - {a_n} = - \left( {n - 1} \right)d\] formula in $ \left( 2 \right) $ we get,
$ \Rightarrow \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{1}{{ - d}}\left( {\dfrac{{ - \left( {n - 1} \right)d}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }}} \right) $
$ = \dfrac{{\left( {n - 1} \right)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Hence, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
So, the correct answer is “Option B”.
Note: A common difference $ \left( d \right) $ is the difference between the first two terms.
Hence, the common difference $ d $ is given by \[{a_2} - {a_1}\; = {a_3} - {a_2} = \ldots . = {a_n} - {a_{n - 1}}\; = d\]
Multiplying by a minus sign, we get
\[{a_1} - {a_2}\; = {a_2} - {a_3} = \ldots . = {a_{n - 1}} - {a_n}\; = - d\]
We know that \[{a_n} = a + \left( {n - 1} \right)d\]
\[{a_n} = a + \left( {n - 1} \right)d \Rightarrow a - {a_n} = - \left( {n - 1} \right)d\]
These are the required formulae to obtain the answer. These are derived from the original formulae for our convenience.
Hence, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + ..... + \dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

