
If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in arithmetic progression. Prove that$\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}$.
Answer
585.6k+ views
Hint: If \[a,b,c\] are in arithmetic progression,
$b=\dfrac{a+c}{2}$
$b=a+d=c-d$
$c=b+d=a+2d$
Here, ‘d’ is called the common difference of the arithmetic progression.
$d=c-b=b-a$
The general term in an arithmetic progression can be written as ${{a}_{n}}=a+(n-1)d$.
Complete step by step answer:
We are given, \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in arithmetic progression.
We have to prove that $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}$.
LHS$=\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}$
We know that, ${{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d$ and so on.
Hence,
LHS$=\dfrac{1}{{{a}_{1}}({{a}_{1}}+d)}+\dfrac{1}{{{a}_{2}}({{a}_{2}}+d)}+\,.........\,+\dfrac{1}{{{a}_{n-1}}({{a}_{n-1}}+d)}$
Each term in the LHS is of the form $\dfrac{1}{a(a+d)}$ . Multiplying numerator and denominator by $d$ we get each terms in the form $\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right)$ . Now we can split each terms of the LHS as $\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right)=\dfrac{1}{d}\left( \dfrac{1}{a}-\dfrac{1}{a+d} \right)$ .
Hence, the LHS becomes,
LHS$=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d} \right)+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d} \right)+.......+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)$
$\dfrac{1}{d}$is common for all the terms in the LHS. Hence, on taking the common term outside we get,
LHS$=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d}+.......+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)$
We know that, ${{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d$ and so on.
On substituting the above in the LHS, we get,
LHS\[=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}}+.......+\dfrac{1}{{{a}_{n-2}}}-\dfrac{1}{{{a}_{n-1}}}+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n}}} \right)\]
\[=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{n}}} \right)\]
On taking LCM, we get,
LHS\[=\dfrac{1}{d}\left( \dfrac{{{a}_{n}}-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)\]
We know that, ${{a}_{n}}={{a}_{1}}+(n-1)d$
Substituting ${{a}_{n}}={{a}_{1}}+(n-1)d$ in LHS, we obtain,
LHS\[=\dfrac{1}{d}\left( \dfrac{{{a}_{1}}+(n-1)d-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)\]
\[=\dfrac{1}{d}\left( \dfrac{(n-1)d}{{{a}_{1}}{{a}_{n}}} \right)\]
\[=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}}\]
$\therefore $ LHS\[=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}}\] = RHS
That is, LHS=RHS.
Hence, we have proved that $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}$.
Note: Similar questions can be asked in terms of the progression being even geometric and harmonic. In other words, the question can be, “If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in geometric progression” or “If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in harmonic progression”, solve the equation. In both cases, we can solve the question in a way similar to what we have already discussed.
We need only keep in mind some basic properties of geometric and harmonic progressions.
Some properties of geometric progression are:
Suppose $a,b,c$ are in G.P. Then,
${{b}^{2}}=ac$
$b=ar=\dfrac{c}{r}$
$c=br=a{{r}^{2}}$
Here ‘$r$’ is called the common ratio of the geometric.
Some properties of harmonic progression are:
Suppose $a,b,c$ are in H.P. Then,
$\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}$
The reciprocals of the terms in H.P are in arithmetic progression.
$b=\dfrac{2ac}{a+c}$
$b=\dfrac{a+c}{2}$
$b=a+d=c-d$
$c=b+d=a+2d$
Here, ‘d’ is called the common difference of the arithmetic progression.
$d=c-b=b-a$
The general term in an arithmetic progression can be written as ${{a}_{n}}=a+(n-1)d$.
Complete step by step answer:
We are given, \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in arithmetic progression.
We have to prove that $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}$.
LHS$=\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}$
We know that, ${{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d$ and so on.
Hence,
LHS$=\dfrac{1}{{{a}_{1}}({{a}_{1}}+d)}+\dfrac{1}{{{a}_{2}}({{a}_{2}}+d)}+\,.........\,+\dfrac{1}{{{a}_{n-1}}({{a}_{n-1}}+d)}$
Each term in the LHS is of the form $\dfrac{1}{a(a+d)}$ . Multiplying numerator and denominator by $d$ we get each terms in the form $\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right)$ . Now we can split each terms of the LHS as $\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right)=\dfrac{1}{d}\left( \dfrac{1}{a}-\dfrac{1}{a+d} \right)$ .
Hence, the LHS becomes,
LHS$=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d} \right)+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d} \right)+.......+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)$
$\dfrac{1}{d}$is common for all the terms in the LHS. Hence, on taking the common term outside we get,
LHS$=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d}+.......+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)$
We know that, ${{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d$ and so on.
On substituting the above in the LHS, we get,
LHS\[=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}}+.......+\dfrac{1}{{{a}_{n-2}}}-\dfrac{1}{{{a}_{n-1}}}+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n}}} \right)\]
\[=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{n}}} \right)\]
On taking LCM, we get,
LHS\[=\dfrac{1}{d}\left( \dfrac{{{a}_{n}}-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)\]
We know that, ${{a}_{n}}={{a}_{1}}+(n-1)d$
Substituting ${{a}_{n}}={{a}_{1}}+(n-1)d$ in LHS, we obtain,
LHS\[=\dfrac{1}{d}\left( \dfrac{{{a}_{1}}+(n-1)d-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)\]
\[=\dfrac{1}{d}\left( \dfrac{(n-1)d}{{{a}_{1}}{{a}_{n}}} \right)\]
\[=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}}\]
$\therefore $ LHS\[=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}}\] = RHS
That is, LHS=RHS.
Hence, we have proved that $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}$.
Note: Similar questions can be asked in terms of the progression being even geometric and harmonic. In other words, the question can be, “If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in geometric progression” or “If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in harmonic progression”, solve the equation. In both cases, we can solve the question in a way similar to what we have already discussed.
We need only keep in mind some basic properties of geometric and harmonic progressions.
Some properties of geometric progression are:
Suppose $a,b,c$ are in G.P. Then,
${{b}^{2}}=ac$
$b=ar=\dfrac{c}{r}$
$c=br=a{{r}^{2}}$
Here ‘$r$’ is called the common ratio of the geometric.
Some properties of harmonic progression are:
Suppose $a,b,c$ are in H.P. Then,
$\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}$
The reciprocals of the terms in H.P are in arithmetic progression.
$b=\dfrac{2ac}{a+c}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

