
If \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\left( d\ne 0 \right)\] then prove that
\[\sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)=\cot {{a}_{1}}-\cot {{a}_{n}}\]
Answer
568.5k+ views
Hint: We solve this problem by using the composite angle formula and common difference of an A.P
We use the condition that the common difference of an A.P is given as the difference of any two consecutive terms in the A.P that is if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
We have the formula of composite angle for sine function as
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
Complete step by step answer:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\left( d\ne 0 \right)\]
We are asked to prove that
\[\sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)=\cot {{a}_{1}}-\cot {{a}_{n}}\]
Let us assume that the LHS of given result as
\[\Rightarrow L=\sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)\]
We know that the formula of cosecant function as
\[\csc \theta =\dfrac{1}{\sin \theta }\]
By using the above formula and multiplying the outside term to inside the bracket in LHS we get
\[\begin{align}
& \Rightarrow L=\sin d\left( \dfrac{1}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{1}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{1}{\sin {{a}_{n-1}}\sin {{a}_{n}}} \right) \\
& \Rightarrow L=\dfrac{\sin d}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin d}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{\sin d}{\sin {{a}_{n-1}}\sin {{a}_{n}}} \\
\end{align}\]
We know that the condition that the common difference of an A.P is given as the difference of any two consecutive terms in the A.P that is if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
Now, let us use the required values in the required terms of the above equation then we get
\[\Rightarrow L=\dfrac{\sin \left( {{a}_{2}}-{{a}_{1}} \right)}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin \left( {{a}_{3}}-{{a}_{2}} \right)}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{\sin \left( {{a}_{n}}-{{a}_{n-1}} \right)}{\sin {{a}_{n-1}}\sin {{a}_{n}}}\]
We know that the formula of composite angle for sine function as
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
By using this formula of composite angle to the above equation we get
\[\Rightarrow L=\dfrac{\sin {{a}_{2}}\cos {{a}_{1}}-\cos {{a}_{2}}\sin {{a}_{1}}}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin {{a}_{3}}\cos {{a}_{2}}-\cos {{a}_{3}}\sin {{a}_{2}}}{\sin {{a}_{2}}\sin {{a}_{2}}}+...+\dfrac{\sin {{a}_{n}}\cos {{a}_{n-1}}-\cos {{a}_{n}}\sin {{a}_{n-1}}}{\sin {{a}_{n}}\sin {{a}_{n-1}}}\]
Now, let us divide the each term to individual terms then we get
\[\begin{align}
& \Rightarrow L=\cot {{a}_{1}}-\cot {{a}_{2}}+\cot {{a}_{2}}-\cot {{a}_{3}}+\cot {{a}_{3}}-\cot {{a}_{4}}+...+\cot {{a}_{n-1}}-\cot {{a}_{n}} \\
& \Rightarrow L=\cot {{a}_{1}}-\cot {{a}_{n}} \\
\end{align}\]
Here we can see that the value of LHS is equal to RHS
Therefore we can conclude that the required result has been proved that is
\[\therefore \sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)=\cot {{a}_{1}}-\cot {{a}_{n}}\]
Note:
Students may do mistake in taking the common difference of an A.P
We know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
Here we can see that the difference of any two consecutive terms gives the common difference. But students may misunderstand the definition of A.P and take the common difference as the difference of only first two terms that is
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}\]
We use the condition that the common difference of an A.P is given as the difference of any two consecutive terms in the A.P that is if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
We have the formula of composite angle for sine function as
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
Complete step by step answer:
We are given that \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\left( d\ne 0 \right)\]
We are asked to prove that
\[\sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)=\cot {{a}_{1}}-\cot {{a}_{n}}\]
Let us assume that the LHS of given result as
\[\Rightarrow L=\sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)\]
We know that the formula of cosecant function as
\[\csc \theta =\dfrac{1}{\sin \theta }\]
By using the above formula and multiplying the outside term to inside the bracket in LHS we get
\[\begin{align}
& \Rightarrow L=\sin d\left( \dfrac{1}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{1}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{1}{\sin {{a}_{n-1}}\sin {{a}_{n}}} \right) \\
& \Rightarrow L=\dfrac{\sin d}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin d}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{\sin d}{\sin {{a}_{n-1}}\sin {{a}_{n}}} \\
\end{align}\]
We know that the condition that the common difference of an A.P is given as the difference of any two consecutive terms in the A.P that is if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
Now, let us use the required values in the required terms of the above equation then we get
\[\Rightarrow L=\dfrac{\sin \left( {{a}_{2}}-{{a}_{1}} \right)}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin \left( {{a}_{3}}-{{a}_{2}} \right)}{\sin {{a}_{2}}\sin {{a}_{3}}}+...+\dfrac{\sin \left( {{a}_{n}}-{{a}_{n-1}} \right)}{\sin {{a}_{n-1}}\sin {{a}_{n}}}\]
We know that the formula of composite angle for sine function as
\[\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B\]
By using this formula of composite angle to the above equation we get
\[\Rightarrow L=\dfrac{\sin {{a}_{2}}\cos {{a}_{1}}-\cos {{a}_{2}}\sin {{a}_{1}}}{\sin {{a}_{1}}\sin {{a}_{2}}}+\dfrac{\sin {{a}_{3}}\cos {{a}_{2}}-\cos {{a}_{3}}\sin {{a}_{2}}}{\sin {{a}_{2}}\sin {{a}_{2}}}+...+\dfrac{\sin {{a}_{n}}\cos {{a}_{n-1}}-\cos {{a}_{n}}\sin {{a}_{n-1}}}{\sin {{a}_{n}}\sin {{a}_{n-1}}}\]
Now, let us divide the each term to individual terms then we get
\[\begin{align}
& \Rightarrow L=\cot {{a}_{1}}-\cot {{a}_{2}}+\cot {{a}_{2}}-\cot {{a}_{3}}+\cot {{a}_{3}}-\cot {{a}_{4}}+...+\cot {{a}_{n-1}}-\cot {{a}_{n}} \\
& \Rightarrow L=\cot {{a}_{1}}-\cot {{a}_{n}} \\
\end{align}\]
Here we can see that the value of LHS is equal to RHS
Therefore we can conclude that the required result has been proved that is
\[\therefore \sin d\left( \csc {{a}_{1}}\csc {{a}_{2}}+\csc {{a}_{2}}\csc {{a}_{3}}+....+\csc {{a}_{n-1}}\csc {{a}_{n}} \right)=\cot {{a}_{1}}-\cot {{a}_{n}}\]
Note:
Students may do mistake in taking the common difference of an A.P
We know that if \[{{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{n}}\] are in A.P with common difference \[d\] then
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{n}}-{{a}_{n-1}}\]
Here we can see that the difference of any two consecutive terms gives the common difference. But students may misunderstand the definition of A.P and take the common difference as the difference of only first two terms that is
\[\Rightarrow d={{a}_{2}}-{{a}_{1}}\]
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

