
If ${{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{4001}}$ are terms of an A.P. such that $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{1}{{{a}_{4000}}{{a}_{4001}}}=10$ and ${{a}_{2}}+{{a}_{4000}}=50$, then find the value of $\left| {{a}_{1}}-{{a}_{4001}} \right|$.
A. 20
B. 30
C. 40
D. 50
Answer
569.4k+ views
Hint: From the given series of A.P. we find the general term of the series. We find the formula for ${{t}_{n}}$, the ${{n}^{th}}$ term of the series. We put the values of ${{a}_{2}},{{a}_{4000}},{{a}_{4001}}$ in the equation of ${{a}_{2}}+{{a}_{4000}}=50$. Then we find the sum and multiplication value of ${{a}_{1}},{{a}_{4001}}$. We use the identity of \[xy={{\left( \dfrac{x+y}{2} \right)}^{2}}-{{\left( \dfrac{x-y}{2} \right)}^{2}}\] to find the solution of the problem.
Complete step-by-step solution:
We have been given a series of A.P. which is ${{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{4001}}$. There are 4001 terms in the series. We express the A.P. in its general form.
We express the terms as ${{t}_{n}}$, the ${{n}^{th}}$ term of the series.
The first term is ${{t}_{1}}={{a}_{1}}$. Let the common difference be d.
So, $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{4001}}-{{a}_{4000}}$.
We express general term ${{t}_{n}}$ as ${{t}_{n}}={{t}_{1}}+\left( n-1 \right)d={{a}_{1}}+d\left( n-1 \right)$.
We try to find the terms ${{a}_{2}},{{a}_{4000}},{{a}_{4001}}$.
\[{{a}_{2}}={{a}_{1}}+\left( 2-1 \right)d={{a}_{1}}+d\]
\[{{a}_{4000}}={{a}_{1}}+\left( 4000-1 \right)d={{a}_{1}}+3999d\]
\[{{a}_{4001}}={{a}_{1}}+\left( 4001-1 \right)d={{a}_{1}}+4000d\]
It’s also given ${{a}_{2}}+{{a}_{4000}}=50$ which gives
\[\begin{align}
& {{a}_{2}}+{{a}_{4000}}=50 \\
& \Rightarrow \left( {{a}_{1}}+d \right)+\left( {{a}_{1}}+3999d \right)=50 \\
& \Rightarrow {{a}_{1}}+{{a}_{1}}+4000d=50 \\
& \Rightarrow {{a}_{1}}+{{a}_{4001}}=50....(i) \\
\end{align}\]
Now we multiply d with the equation $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{1}{{{a}_{4000}}{{a}_{4001}}}=10$.
$\dfrac{d}{{{a}_{1}}{{a}_{2}}}+\dfrac{d}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{d}{{{a}_{4000}}{{a}_{4001}}}=10d$.
We replace the values $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{4001}}-{{a}_{4000}}$.
$\dfrac{{{a}_{2}}-{{a}_{1}}}{{{a}_{1}}{{a}_{2}}}+\dfrac{{{a}_{3}}-{{a}_{2}}}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{{{a}_{4001}}-{{a}_{4000}}}{{{a}_{4000}}{{a}_{4001}}}=10d$. Now we break the equations and get
\[\begin{align}
& \left( \dfrac{{{a}_{2}}-{{a}_{1}}}{{{a}_{1}}{{a}_{2}}} \right)+\left( \dfrac{{{a}_{3}}-{{a}_{2}}}{{{a}_{2}}{{a}_{3}}} \right)+....+\left( \dfrac{{{a}_{4001}}-{{a}_{4000}}}{{{a}_{4000}}{{a}_{4001}}} \right)=10d \\
& \Rightarrow \left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{2}}} \right)+\left( \dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}} \right)+.....+\left( \dfrac{1}{{{a}_{4000}}}-\dfrac{1}{{{a}_{4001}}} \right)=10d \\
\end{align}\]
The first part of a term gets cancelled out with the last part of the previous term.
\[\begin{align}
& \Rightarrow \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{2}}}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}}+.....+\dfrac{1}{{{a}_{4000}}}-\dfrac{1}{{{a}_{4001}}}=10d \\
& \Rightarrow \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{4001}}}=10d \\
\end{align}\]
Placing the values of ${{a}_{2}},{{a}_{4000}},{{a}_{4001}}$ we get
\[\begin{align}
& \Rightarrow \dfrac{{{a}_{4001}}-{{a}_{1}}}{{{a}_{1}}.{{a}_{4001}}}=10d \\
& \Rightarrow \dfrac{{{a}_{1}}+4000d-{{a}_{1}}}{{{a}_{1}}.{{a}_{4001}}}=10d \\
& \Rightarrow {{a}_{1}}.{{a}_{4001}}=\dfrac{4000d}{10d}=400...(ii) \\
\end{align}\]
From equation (ii) we get
\[\begin{align}
& {{a}_{1}}.{{a}_{4001}}=400 \\
& \Rightarrow {{\left( \dfrac{{{a}_{1}}+{{a}_{4001}}}{2} \right)}^{2}}-{{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}=400 \\
\end{align}\]
Using the equational value of (i)
\[\begin{align}
& \Rightarrow {{\left( \dfrac{50}{2} \right)}^{2}}-{{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}=400 \\
& \Rightarrow {{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}={{25}^{2}}-400=225 \\
& \Rightarrow \left| {{a}_{1}}-{{a}_{4001}} \right|=2\sqrt{225}=30 \\
\end{align}\]
The correct option is B.
Note: We also can solve the problem using the trial and error method for the two equations. We also can assume the values of the terms ${{a}_{1}},{{a}_{4001}}$ as m and n to make the equation more understandable.
Complete step-by-step solution:
We have been given a series of A.P. which is ${{a}_{1}},{{a}_{2}},{{a}_{3}},....,{{a}_{4001}}$. There are 4001 terms in the series. We express the A.P. in its general form.
We express the terms as ${{t}_{n}}$, the ${{n}^{th}}$ term of the series.
The first term is ${{t}_{1}}={{a}_{1}}$. Let the common difference be d.
So, $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{4001}}-{{a}_{4000}}$.
We express general term ${{t}_{n}}$ as ${{t}_{n}}={{t}_{1}}+\left( n-1 \right)d={{a}_{1}}+d\left( n-1 \right)$.
We try to find the terms ${{a}_{2}},{{a}_{4000}},{{a}_{4001}}$.
\[{{a}_{2}}={{a}_{1}}+\left( 2-1 \right)d={{a}_{1}}+d\]
\[{{a}_{4000}}={{a}_{1}}+\left( 4000-1 \right)d={{a}_{1}}+3999d\]
\[{{a}_{4001}}={{a}_{1}}+\left( 4001-1 \right)d={{a}_{1}}+4000d\]
It’s also given ${{a}_{2}}+{{a}_{4000}}=50$ which gives
\[\begin{align}
& {{a}_{2}}+{{a}_{4000}}=50 \\
& \Rightarrow \left( {{a}_{1}}+d \right)+\left( {{a}_{1}}+3999d \right)=50 \\
& \Rightarrow {{a}_{1}}+{{a}_{1}}+4000d=50 \\
& \Rightarrow {{a}_{1}}+{{a}_{4001}}=50....(i) \\
\end{align}\]
Now we multiply d with the equation $\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{1}{{{a}_{4000}}{{a}_{4001}}}=10$.
$\dfrac{d}{{{a}_{1}}{{a}_{2}}}+\dfrac{d}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{d}{{{a}_{4000}}{{a}_{4001}}}=10d$.
We replace the values $d={{a}_{2}}-{{a}_{1}}={{a}_{3}}-{{a}_{2}}=....={{a}_{4001}}-{{a}_{4000}}$.
$\dfrac{{{a}_{2}}-{{a}_{1}}}{{{a}_{1}}{{a}_{2}}}+\dfrac{{{a}_{3}}-{{a}_{2}}}{{{a}_{2}}{{a}_{3}}}+....+\dfrac{{{a}_{4001}}-{{a}_{4000}}}{{{a}_{4000}}{{a}_{4001}}}=10d$. Now we break the equations and get
\[\begin{align}
& \left( \dfrac{{{a}_{2}}-{{a}_{1}}}{{{a}_{1}}{{a}_{2}}} \right)+\left( \dfrac{{{a}_{3}}-{{a}_{2}}}{{{a}_{2}}{{a}_{3}}} \right)+....+\left( \dfrac{{{a}_{4001}}-{{a}_{4000}}}{{{a}_{4000}}{{a}_{4001}}} \right)=10d \\
& \Rightarrow \left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{2}}} \right)+\left( \dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}} \right)+.....+\left( \dfrac{1}{{{a}_{4000}}}-\dfrac{1}{{{a}_{4001}}} \right)=10d \\
\end{align}\]
The first part of a term gets cancelled out with the last part of the previous term.
\[\begin{align}
& \Rightarrow \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{2}}}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}}+.....+\dfrac{1}{{{a}_{4000}}}-\dfrac{1}{{{a}_{4001}}}=10d \\
& \Rightarrow \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{4001}}}=10d \\
\end{align}\]
Placing the values of ${{a}_{2}},{{a}_{4000}},{{a}_{4001}}$ we get
\[\begin{align}
& \Rightarrow \dfrac{{{a}_{4001}}-{{a}_{1}}}{{{a}_{1}}.{{a}_{4001}}}=10d \\
& \Rightarrow \dfrac{{{a}_{1}}+4000d-{{a}_{1}}}{{{a}_{1}}.{{a}_{4001}}}=10d \\
& \Rightarrow {{a}_{1}}.{{a}_{4001}}=\dfrac{4000d}{10d}=400...(ii) \\
\end{align}\]
From equation (ii) we get
\[\begin{align}
& {{a}_{1}}.{{a}_{4001}}=400 \\
& \Rightarrow {{\left( \dfrac{{{a}_{1}}+{{a}_{4001}}}{2} \right)}^{2}}-{{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}=400 \\
\end{align}\]
Using the equational value of (i)
\[\begin{align}
& \Rightarrow {{\left( \dfrac{50}{2} \right)}^{2}}-{{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}=400 \\
& \Rightarrow {{\left( \dfrac{{{a}_{1}}-{{a}_{4001}}}{2} \right)}^{2}}={{25}^{2}}-400=225 \\
& \Rightarrow \left| {{a}_{1}}-{{a}_{4001}} \right|=2\sqrt{225}=30 \\
\end{align}\]
The correct option is B.
Note: We also can solve the problem using the trial and error method for the two equations. We also can assume the values of the terms ${{a}_{1}},{{a}_{4001}}$ as m and n to make the equation more understandable.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

