
If \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] are in A.P. where \[{a_i} > {\text{ }}0\]for all show that
$ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Answer
587.7k+ views
Hint: To solve this question, we will take L.H.S. first, where we start with rationalizing as it contains imaginary numbers.
Then using the formulas of A.P. we will show the L.H.S. equals to R.H.S.
Complete step-by-step answer:
Step 1: We have been given, \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] in A.P. where \[{a_i} > {\text{ }}0\]
And we have to show that, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Now let us take the L.H.S. of the given equation, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
On rationalizing the above L.H.S. of the given equation, we get
$ \begin{gathered}
= \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 1 \right)\]
Step 2: So, the formula from AP which we used now is, \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\]
where, a2 \[ = \] second term of AP
a1 \[ = \] first term of AP
d \[ = \] difference between two consecutive terms in AP
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 1 \right),\]we get
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} ....... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_n}} }}{{ - d}} $
Now, on again rationalizing, we get
$ \begin{gathered}
= \dfrac{{{a_1} - {a_n}}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 2 \right)\]
Step 3: Now, put the value of \[{a_n} = {\text{ }}{a_1} + {\text{ }}\left( {n - 1} \right)d,\]
where, a $ = $ first term of AP
n $ = $ number of terms in AP
d $ = $ difference between two consecutive terms in AP.
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 2 \right),\]we get
$ \begin{gathered}
= \dfrac{{ - (n - 1)d}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
$ \begin{gathered}
= \dfrac{{(n - 1)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
which is equal to R.H.S.
Thus, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Note: In rationalization, numerator and denominator is multiplied by same root number. It is done to remove the imaginary number from the given equation.
For ex: $ \dfrac{3}{{2 + \sqrt 2 }} = \dfrac{3}{{2 + \sqrt 2 }} \times \dfrac{{2 - \sqrt 2 }}{{2 - \sqrt 2 }} = \dfrac{{3(2 - \sqrt {2)} }}{{4 - 2}} = \dfrac{{6 - 3\sqrt 2 }}{2} $
Then using the formulas of A.P. we will show the L.H.S. equals to R.H.S.
Complete step-by-step answer:
Step 1: We have been given, \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] in A.P. where \[{a_i} > {\text{ }}0\]
And we have to show that, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Now let us take the L.H.S. of the given equation, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
On rationalizing the above L.H.S. of the given equation, we get
$ \begin{gathered}
= \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 1 \right)\]
Step 2: So, the formula from AP which we used now is, \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\]
where, a2 \[ = \] second term of AP
a1 \[ = \] first term of AP
d \[ = \] difference between two consecutive terms in AP
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 1 \right),\]we get
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} ....... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_n}} }}{{ - d}} $
Now, on again rationalizing, we get
$ \begin{gathered}
= \dfrac{{{a_1} - {a_n}}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 2 \right)\]
Step 3: Now, put the value of \[{a_n} = {\text{ }}{a_1} + {\text{ }}\left( {n - 1} \right)d,\]
where, a $ = $ first term of AP
n $ = $ number of terms in AP
d $ = $ difference between two consecutive terms in AP.
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 2 \right),\]we get
$ \begin{gathered}
= \dfrac{{ - (n - 1)d}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
$ \begin{gathered}
= \dfrac{{(n - 1)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
which is equal to R.H.S.
Thus, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Note: In rationalization, numerator and denominator is multiplied by same root number. It is done to remove the imaginary number from the given equation.
For ex: $ \dfrac{3}{{2 + \sqrt 2 }} = \dfrac{3}{{2 + \sqrt 2 }} \times \dfrac{{2 - \sqrt 2 }}{{2 - \sqrt 2 }} = \dfrac{{3(2 - \sqrt {2)} }}{{4 - 2}} = \dfrac{{6 - 3\sqrt 2 }}{2} $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

