
If \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] are in A.P. where \[{a_i} > {\text{ }}0\]for all show that
$ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Answer
570.6k+ views
Hint: To solve this question, we will take L.H.S. first, where we start with rationalizing as it contains imaginary numbers.
Then using the formulas of A.P. we will show the L.H.S. equals to R.H.S.
Complete step-by-step answer:
Step 1: We have been given, \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] in A.P. where \[{a_i} > {\text{ }}0\]
And we have to show that, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Now let us take the L.H.S. of the given equation, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
On rationalizing the above L.H.S. of the given equation, we get
$ \begin{gathered}
= \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 1 \right)\]
Step 2: So, the formula from AP which we used now is, \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\]
where, a2 \[ = \] second term of AP
a1 \[ = \] first term of AP
d \[ = \] difference between two consecutive terms in AP
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 1 \right),\]we get
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} ....... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_n}} }}{{ - d}} $
Now, on again rationalizing, we get
$ \begin{gathered}
= \dfrac{{{a_1} - {a_n}}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 2 \right)\]
Step 3: Now, put the value of \[{a_n} = {\text{ }}{a_1} + {\text{ }}\left( {n - 1} \right)d,\]
where, a $ = $ first term of AP
n $ = $ number of terms in AP
d $ = $ difference between two consecutive terms in AP.
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 2 \right),\]we get
$ \begin{gathered}
= \dfrac{{ - (n - 1)d}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
$ \begin{gathered}
= \dfrac{{(n - 1)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
which is equal to R.H.S.
Thus, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Note: In rationalization, numerator and denominator is multiplied by same root number. It is done to remove the imaginary number from the given equation.
For ex: $ \dfrac{3}{{2 + \sqrt 2 }} = \dfrac{3}{{2 + \sqrt 2 }} \times \dfrac{{2 - \sqrt 2 }}{{2 - \sqrt 2 }} = \dfrac{{3(2 - \sqrt {2)} }}{{4 - 2}} = \dfrac{{6 - 3\sqrt 2 }}{2} $
Then using the formulas of A.P. we will show the L.H.S. equals to R.H.S.
Complete step-by-step answer:
Step 1: We have been given, \[{a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots ..\] in A.P. where \[{a_i} > {\text{ }}0\]
And we have to show that, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Now let us take the L.H.S. of the given equation, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} $
On rationalizing the above L.H.S. of the given equation, we get
$ \begin{gathered}
= \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{{a_1} - {a_2}}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{{a_2} - {a_3}}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{{a_{n - 1}} - {a_n}}} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 1 \right)\]
Step 2: So, the formula from AP which we used now is, \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\]
where, a2 \[ = \] second term of AP
a1 \[ = \] first term of AP
d \[ = \] difference between two consecutive terms in AP
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 1 \right),\]we get
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} }}{{ - d}} + \dfrac{{\sqrt {{a_2}} - \sqrt {{a_3}} }}{{ - d}} + .........\dfrac{{\sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_2}} + \sqrt {{a_2}} - \sqrt {{a_3}} ....... + \sqrt {{a_{n - 1}}} - \sqrt {{a_n}} }}{{ - d}} $
$ = \dfrac{{\sqrt {{a_1}} - \sqrt {{a_n}} }}{{ - d}} $
Now, on again rationalizing, we get
$ \begin{gathered}
= \dfrac{{{a_1} - {a_n}}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $ \[ \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{\text{ }}eq.{\text{ }}\left( 2 \right)\]
Step 3: Now, put the value of \[{a_n} = {\text{ }}{a_1} + {\text{ }}\left( {n - 1} \right)d,\]
where, a $ = $ first term of AP
n $ = $ number of terms in AP
d $ = $ difference between two consecutive terms in AP.
On substituting \[{a_2}-{\text{ }}{a_1} = {\text{ }}d,\] in \[eq.{\text{ }}\left( 2 \right),\]we get
$ \begin{gathered}
= \dfrac{{ - (n - 1)d}}{{ - d\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
$ \begin{gathered}
= \dfrac{{(n - 1)}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} \\
\\
\end{gathered} $
which is equal to R.H.S.
Thus, $ \dfrac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \dfrac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + .........\dfrac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = \dfrac{{n - 1}}{{\sqrt {{a_1}} + \sqrt {{a_n}} }} $
Note: In rationalization, numerator and denominator is multiplied by same root number. It is done to remove the imaginary number from the given equation.
For ex: $ \dfrac{3}{{2 + \sqrt 2 }} = \dfrac{3}{{2 + \sqrt 2 }} \times \dfrac{{2 - \sqrt 2 }}{{2 - \sqrt 2 }} = \dfrac{{3(2 - \sqrt {2)} }}{{4 - 2}} = \dfrac{{6 - 3\sqrt 2 }}{2} $
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

Discuss the main reasons for poverty in India

