
If ${{a}_{1}}$ , ${{a}_{2}}$ , ${{a}_{3}}$ , ${{b}_{1}}$ , ${{b}_{2}}$ , ${{b}_{3}}$ $\in $ R and are such that ${{a}_{i}}{{b}_{j}}\ne 0$ for 1 $\le $ i,j $\le $ 3, then
$\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$ > 0 Provided either ${{a}_{1}}$ < ${{a}_{2}}$ < ${{a}_{3}}$ and ${{b}_{1}}$ < ${{b}_{2}}$ < ${{b}_{3}}$ or ${{a}_{1}}$ > ${{a}_{2}}$${{a}_{3}}$ and ${{b}_{1}}>{{b}_{2}}>{{b}_{3}}$ then show that $\left( {{a}_{1}}-{{a}_{2}} \right)\left( {{a}_{2}}-{{a}_{3}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{1}}-{{b}_{2}} \right)\left( {{b}_{2}}-{{b}_{3}} \right)\left( {{b}_{3}}-{{b}_{1}} \right)<0$
Answer
551.1k+ views
Hint: We know that $\dfrac{{{a}^{3}}-{{b}^{3}}}{a-b}$ is equal to ${{a}^{2}}+{{b}^{2}}+ab$ where a is not equal to b. it is given that ${{a}_{i}}{{b}_{j}}\ne 0$ for 1 $\le $ i,j $\le $ 3 so we can write $\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}}=1+{{a}_{1}}^{2}{{b}_{1}}^{2}+{{a}_{1}}{{b}_{1}}$ . Then we can see the matrix is a product of 2 matrices. We can find the 2 matrices and find their determinant to solve the equation.
Complete step by step solution:
The given determinant is $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$
We know that $\dfrac{{{a}^{3}}-{{b}^{3}}}{a-b}$ is equal to ${{a}^{2}}+{{b}^{2}}+ab$ where a is not equal to b
So we can write $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$ as $\left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|$
If we observe we can see the above matrix is the product of 2 matrix.
We can write
$\Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{a}_{1}} & {{a}_{1}}^{2} \\
1 & {{a}_{2}} & {{a}_{2}}^{2} \\
1 & {{a}_{3}} & {{a}_{3}}^{2} \\
\end{matrix} \right|\left| \begin{matrix}
1 & 1 & 1 \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{b}_{1}}^{2} & {{b}_{2}}^{2} & {{b}_{3}}^{2} \\
\end{matrix} \right|$
Now we can perform row and column operation
$\Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{a}_{1}} & {{a}_{1}}^{2} \\
0 & {{a}_{2}}-{{a}_{1}} & {{a}_{2}}^{2}-{{a}_{1}}^{2} \\
0 & {{a}_{3}}-{{a}_{1}} & {{a}_{3}}^{2}-{{a}_{1}}^{2} \\
\end{matrix} \right|\left| \begin{matrix}
1 & 0 & 0 \\
{{b}_{1}} & {{b}_{2}}-{{b}_{1}} & {{b}_{3}}-{{b}_{1}} \\
{{b}_{1}}^{2} & {{b}_{2}}^{2}-{{b}_{1}}^{2} & {{b}_{3}}^{2}-{{b}_{1}}^{2} \\
\end{matrix} \right|$
Now evaluating the determinant, we get
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|= \\
& \left[ \left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{3}}^{2}-{{a}_{1}}^{2} \right)-\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{a}_{2}}^{2}-{{a}_{1}}^{2} \right) \right]\left[ \left( {{b}_{2}}-{{b}_{1}} \right)\left( {{b}_{3}}^{2}-{{b}_{1}}^{2} \right)-\left( {{b}_{3}}-{{b}_{1}} \right)\left( {{b}_{2}}^{2}-{{b}_{1}}^{2} \right) \right] \\
\end{align}$
Further solving it we get
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{3}}-{{a}_{2}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{2}}-{{b}_{1}} \right)\left( {{b}_{3}}-{{b}_{1}} \right)\left( {{b}_{3}}-{{b}_{2}} \right) \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left( {{a}_{1}}-{{a}_{2}} \right)\left( {{a}_{2}}-{{a}_{3}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{1}}-{{b}_{2}} \right)\left( {{b}_{2}}-{{b}_{3}} \right)\left( {{b}_{3}}-{{b}_{1}} \right) \\
& \\
\end{align}$so if $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$ > 0 then $\left( {{a}_{1}}-{{a}_{2}} \right)\left( {{a}_{2}}-{{a}_{3}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{1}}-{{b}_{2}} \right)\left( {{b}_{2}}-{{b}_{3}} \right)\left( {{b}_{3}}-{{b}_{1}} \right)$ > 0
Note: If product of matrix A and B is equal to matrix c, then product of determinant of A and B is equal to determinant of C. The determinant of matrix A is equal to determinant of transpose of A. If the determinant of A is equal to 0, Then we can not find the inverse of the matrix A. The determinant of the inverse of matrix A is equal to the reciprocal of determinant of matrix A.
Complete step by step solution:
The given determinant is $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$
We know that $\dfrac{{{a}^{3}}-{{b}^{3}}}{a-b}$ is equal to ${{a}^{2}}+{{b}^{2}}+ab$ where a is not equal to b
So we can write $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$ as $\left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|$
If we observe we can see the above matrix is the product of 2 matrix.
We can write
$\Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{a}_{1}} & {{a}_{1}}^{2} \\
1 & {{a}_{2}} & {{a}_{2}}^{2} \\
1 & {{a}_{3}} & {{a}_{3}}^{2} \\
\end{matrix} \right|\left| \begin{matrix}
1 & 1 & 1 \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{b}_{1}}^{2} & {{b}_{2}}^{2} & {{b}_{3}}^{2} \\
\end{matrix} \right|$
Now we can perform row and column operation
$\Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{a}_{1}} & {{a}_{1}}^{2} \\
0 & {{a}_{2}}-{{a}_{1}} & {{a}_{2}}^{2}-{{a}_{1}}^{2} \\
0 & {{a}_{3}}-{{a}_{1}} & {{a}_{3}}^{2}-{{a}_{1}}^{2} \\
\end{matrix} \right|\left| \begin{matrix}
1 & 0 & 0 \\
{{b}_{1}} & {{b}_{2}}-{{b}_{1}} & {{b}_{3}}-{{b}_{1}} \\
{{b}_{1}}^{2} & {{b}_{2}}^{2}-{{b}_{1}}^{2} & {{b}_{3}}^{2}-{{b}_{1}}^{2} \\
\end{matrix} \right|$
Now evaluating the determinant, we get
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|= \\
& \left[ \left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{3}}^{2}-{{a}_{1}}^{2} \right)-\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{a}_{2}}^{2}-{{a}_{1}}^{2} \right) \right]\left[ \left( {{b}_{2}}-{{b}_{1}} \right)\left( {{b}_{3}}^{2}-{{b}_{1}}^{2} \right)-\left( {{b}_{3}}-{{b}_{1}} \right)\left( {{b}_{2}}^{2}-{{b}_{1}}^{2} \right) \right] \\
\end{align}$
Further solving it we get
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left( {{a}_{2}}-{{a}_{1}} \right)\left( {{a}_{3}}-{{a}_{2}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{2}}-{{b}_{1}} \right)\left( {{b}_{3}}-{{b}_{1}} \right)\left( {{b}_{3}}-{{b}_{2}} \right) \\
& \\
\end{align}$
$\begin{align}
& \Rightarrow \left| \begin{matrix}
1+{{a}_{1}}{{b}_{1}}+{{a}_{1}}^{2}{{b}_{1}}^{2} & 1+{{a}_{1}}{{b}_{2}}+{{a}_{1}}^{2}{{b}_{2}}^{2} & 1+{{a}_{1}}{{b}_{3}}+{{a}_{1}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{2}}{{b}_{1}}+{{a}_{2}}^{2}{{b}_{1}}^{2} & 1+{{a}_{2}}{{b}_{2}}+{{a}_{2}}^{2}{{b}_{2}}^{2} & 1+{{a}_{2}}{{b}_{3}}+{{a}_{2}}^{2}{{b}_{3}}^{2} \\
1+{{a}_{3}}{{b}_{1}}+{{a}_{3}}^{2}{{b}_{1}}^{2} & 1+{{a}_{3}}{{b}_{2}}+{{a}_{3}}^{2}{{b}_{2}}^{2} & 1+{{a}_{3}}{{b}_{3}}+{{a}_{3}}^{2}{{b}_{3}}^{2} \\
\end{matrix} \right|=\left( {{a}_{1}}-{{a}_{2}} \right)\left( {{a}_{2}}-{{a}_{3}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{1}}-{{b}_{2}} \right)\left( {{b}_{2}}-{{b}_{3}} \right)\left( {{b}_{3}}-{{b}_{1}} \right) \\
& \\
\end{align}$so if $\left| \begin{matrix}
\dfrac{1-{{a}_{1}}^{3}{{b}_{1}}^{3}}{1-{{a}_{1}}{{b}_{1}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{2}}^{3}}{1-{{a}_{1}}{{b}_{2}}} & \dfrac{1-{{a}_{1}}^{3}{{b}_{3}}^{3}}{1-{{a}_{1}}{{b}_{3}}} \\
\dfrac{1-{{a}_{2}}^{3}{{b}_{1}}^{3}}{1-{{a}_{2}}{{b}_{1}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{2}}^{3}}{1-{{a}_{2}}{{b}_{2}}} & \dfrac{1-{{a}_{2}}^{3}{{b}_{3}}^{3}}{1-{{a}_{2}}{{b}_{3}}} \\
\dfrac{1-{{a}_{3}}^{3}{{b}_{1}}^{3}}{1-{{a}_{3}}{{b}_{1}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{2}}^{3}}{1-{{a}_{3}}{{b}_{2}}} & \dfrac{1-{{a}_{3}}^{3}{{b}_{3}}^{3}}{1-{{a}_{3}}{{b}_{3}}} \\
\end{matrix} \right|$ > 0 then $\left( {{a}_{1}}-{{a}_{2}} \right)\left( {{a}_{2}}-{{a}_{3}} \right)\left( {{a}_{3}}-{{a}_{1}} \right)\left( {{b}_{1}}-{{b}_{2}} \right)\left( {{b}_{2}}-{{b}_{3}} \right)\left( {{b}_{3}}-{{b}_{1}} \right)$ > 0
Note: If product of matrix A and B is equal to matrix c, then product of determinant of A and B is equal to determinant of C. The determinant of matrix A is equal to determinant of transpose of A. If the determinant of A is equal to 0, Then we can not find the inverse of the matrix A. The determinant of the inverse of matrix A is equal to the reciprocal of determinant of matrix A.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

What are the advantages of vegetative propagation class 12 biology CBSE

Suicide bags of cells are aEndoplasmic reticulum bLysosome class 12 biology CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

