If a vertex of a triangle is $\left( {{\text{1,1}}} \right)$ and the midpoints of two sides through this vertex are $\left( { - 1,2} \right)$ and $\left( {{\text{3,2}}} \right)$, then the centroid of the triangle is
${\text{A}}{\text{. }}\left( { - 1,\dfrac{7}{3}} \right) $
${\text{B}}{\text{. }}\left( { - \dfrac{1}{3},\dfrac{7}{3}} \right) $
${\text{C}}{\text{. }}\left( {1,\dfrac{7}{3}} \right)$
${\text{D}}{\text{. }}\left( {\dfrac{1}{3},\dfrac{7}{3}} \right)$
Answer
366k+ views
Hint- Here, we will be proceeding with the help of Midpoint Theorem and formula for coordinates of the centroid of a triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Last updated date: 02nd Oct 2023
•
Total views: 366k
•
Views today: 9.66k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
