
If a vertex of a triangle is $\left( {{\text{1,1}}} \right)$ and the midpoints of two sides through this vertex are $\left( { - 1,2} \right)$ and $\left( {{\text{3,2}}} \right)$, then the centroid of the triangle is
${\text{A}}{\text{. }}\left( { - 1,\dfrac{7}{3}} \right) $
${\text{B}}{\text{. }}\left( { - \dfrac{1}{3},\dfrac{7}{3}} \right) $
${\text{C}}{\text{. }}\left( {1,\dfrac{7}{3}} \right)$
${\text{D}}{\text{. }}\left( {\dfrac{1}{3},\dfrac{7}{3}} \right)$
Answer
609k+ views
Hint- Here, we will be proceeding with the help of Midpoint Theorem and formula for coordinates of the centroid of a triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

