Answer
Verified
495.6k+ views
Hint- Here, we will be proceeding with the help of Midpoint Theorem and formula for coordinates of the centroid of a triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Given, vertex A of the triangle is \[{\text{A}}\left( {1,1} \right)\]
Midpoint of side AB is \[{{\text{M}}_1}\left( { - 1,2} \right)\] and midpoint of side AC is \[{{\text{M}}_2}{\text{(3,2)}}\]
Let the coordinates of vertex B of the triangle be \[\left( {{x_1},{y_1}} \right)\] and that of vertex C be \[\left( {{x_2},{y_2}} \right)\]
As we know that according to Midpoint theorem, coordinates of the midpoint of a line with endpoints as \[\left( {a,b} \right)\] and \[\left( {c,d} \right)\] is given by \[{\text{M}}\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right)\]
Midpoint of line AB is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_1}}}{2},\dfrac{{1 + {y_1}}}{2}} \right) = \left( { - 1,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_1}}}{2} = - 1 \Rightarrow 1 + {x_1} = - 2 \Rightarrow {x_1} = - 3\] and \[ \Rightarrow \dfrac{{1 + {y_1}}}{2} = 2 \Rightarrow 1 + {y_1} = 4 \Rightarrow {y_1} = 3\]
Therefore, coordinates of vertex B of the triangle is \[{\text{B}}\left( { - 3,3} \right)\]
Midpoint of line AC is given by \[{{\text{M}}_1}\left( {\dfrac{{1 + {x_2}}}{2},\dfrac{{1 + {y_2}}}{2}} \right) = \left( {3,2} \right)\]
By comparing given midpoint coordinates with those obtained through Midpoint Theorem, we get
\[ \Rightarrow \dfrac{{1 + {x_2}}}{2} = 3 \Rightarrow 1 + {x_2} = 6 \Rightarrow {x_2} = 5\] and \[ \Rightarrow \dfrac{{1 + {y_2}}}{2} = 2 \Rightarrow 1 + {y_2} = 4 \Rightarrow {y_2} = 3\] $$ $$
Therefore, coordinates of vertex C of the triangle is \[{\text{C}}\left( {5,3} \right)\]
Also, we know that coordinates of the centroid of the triangle with vertices \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)\]
Therefore, coordinates of the centroid of \[\Delta {\text{ABC}}\] whose vertices are \[{\text{A}}\left( {1,1} \right),{\text{B}}\left( { - 3,3} \right)\] and \[{\text{C}}\left( {5,3} \right)\] is given by \[\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right) = \left( {\dfrac{{1 - 3 + 5}}{3},\dfrac{{1 + 3 + 3}}{3}} \right) = \left( {\dfrac{3}{3},\dfrac{7}{3}} \right) = \left( {1,\dfrac{7}{3}} \right)\]
Note- These types of problems are generally solved by firstly finding out all the vertices of the triangle with the help of midpoint theorem and then using the formula for finding the centroid of the triangle which requires the coordinates of all three vertices of the triangle.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE