
If a trigonometric function is given as \[y=\sin \left( 2{{\sin }^{-1}}x \right)\], then show that \[\left( 1-{{x}^{2}} \right)\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\cdot \dfrac{dy}{dx}-4y\]
Answer
618.6k+ views
Hint: First modify the given expression in simplest form and then find the first and second order derivative. Now convert the second order derivative in terms of first order derivative.
Complete step-by-step solution -
The given expression is,
\[y=\sin \left( 2{{\sin }^{-1}}x \right)........(i)\]
Multiplying both sides by ${{\sin }^{-1}}$ , we get
\[\Rightarrow {{\sin }^{-1}}y={{\sin }^{-1}}\sin (2{{\sin }^{-1}}x)\]
We know ${{\sin }^{-1}}\sin $ gets cancelled, so we get
\[\Rightarrow {{\sin }^{-1}}y=(2{{\sin }^{-1}}x)\]
Now differentiating with respect to $'x'$ , we get
\[\dfrac{d}{dx}({{\sin }^{-1}}y)=2\dfrac{d}{dx}({{\sin }^{-1}}x)\]
We know, \[\dfrac{d}{dx}({{\sin }^{-1}}x)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\], applying this formula the above equation can be written as,
\[\Rightarrow \dfrac{1}{\sqrt{1-{{y}^{2}}}}\cdot \dfrac{dy}{dx}=\dfrac{2}{\sqrt{1-{{x}^{2}}}}\]
By cross multiplying, we get
\[\Rightarrow \dfrac{dy}{dx}=2{{\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)}^{1/2}}\]
This is the first derivative, now by squaring both the sides, we get
\[\Rightarrow {{\left( \dfrac{dy}{dx} \right)}^{2}}=4\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)..........(ii)\]
Let us differentiate again to find the second order derivative, so differentiating the above expression with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( {{\left( \dfrac{dy}{dx} \right)}^{2}} \right)=4\dfrac{d}{dx}\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)\]
Applying the quotient rule, i.e., $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}$, we get
\[\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{\left( 1-{{x}^{2}} \right)\dfrac{d}{dx}(1-{{y}^{2}})-(1-{{y}^{2}})\dfrac{d}{dx}(1-{{x}^{2}})}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)\]
Applying the derivative, we get
\[\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+(1-{{y}^{2}})2x}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)\]
Multiplying both sides by $(1-{{x}^{2}})$ , we get
\[\begin{align}
& \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+2x(1-{{y}^{2}})}{1-{{x}^{2}}} \right) \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}+4x(1-{{y}^{2}})}{1-{{x}^{2}}} \\
\end{align}\]
Separating the terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}}{1-{{x}^{2}}}+\dfrac{4x(1-{{y}^{2}})}{1-{{x}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x\left[ 4\dfrac{(1-{{y}^{2}})}{1-{{x}^{2}}} \right]\]
Now substituting value from equation (ii), w eget
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x{{\left( \dfrac{dy}{dx} \right)}^{2}}\]
Taking out the common term, we get
\[\Rightarrow \dfrac{dy}{dx}\left[ \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right]=\dfrac{dy}{dx}\left[ -4y+x\left( \dfrac{dy}{dx} \right) \right]\]
Cancelling the like terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y\]
Hence proved.
Note: In these types of questions first of all you have to check the given expression before starting the differentiation because sometimes the given expression can be in modified form.
Another way of solving this type of problem is finding the first order and second order derivatives, then substituting in \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y\], separately and find out whether left hand side is equal to right hand side. In this method also you will get the same result.
Complete step-by-step solution -
The given expression is,
\[y=\sin \left( 2{{\sin }^{-1}}x \right)........(i)\]
Multiplying both sides by ${{\sin }^{-1}}$ , we get
\[\Rightarrow {{\sin }^{-1}}y={{\sin }^{-1}}\sin (2{{\sin }^{-1}}x)\]
We know ${{\sin }^{-1}}\sin $ gets cancelled, so we get
\[\Rightarrow {{\sin }^{-1}}y=(2{{\sin }^{-1}}x)\]
Now differentiating with respect to $'x'$ , we get
\[\dfrac{d}{dx}({{\sin }^{-1}}y)=2\dfrac{d}{dx}({{\sin }^{-1}}x)\]
We know, \[\dfrac{d}{dx}({{\sin }^{-1}}x)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\], applying this formula the above equation can be written as,
\[\Rightarrow \dfrac{1}{\sqrt{1-{{y}^{2}}}}\cdot \dfrac{dy}{dx}=\dfrac{2}{\sqrt{1-{{x}^{2}}}}\]
By cross multiplying, we get
\[\Rightarrow \dfrac{dy}{dx}=2{{\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)}^{1/2}}\]
This is the first derivative, now by squaring both the sides, we get
\[\Rightarrow {{\left( \dfrac{dy}{dx} \right)}^{2}}=4\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)..........(ii)\]
Let us differentiate again to find the second order derivative, so differentiating the above expression with respect to $'x'$, we get
\[\Rightarrow \dfrac{d}{dx}\left( {{\left( \dfrac{dy}{dx} \right)}^{2}} \right)=4\dfrac{d}{dx}\left( \dfrac{1-{{y}^{2}}}{1-{{x}^{2}}} \right)\]
Applying the quotient rule, i.e., $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}$, we get
\[\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{\left( 1-{{x}^{2}} \right)\dfrac{d}{dx}(1-{{y}^{2}})-(1-{{y}^{2}})\dfrac{d}{dx}(1-{{x}^{2}})}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)\]
Applying the derivative, we get
\[\Rightarrow 2\dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=4\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+(1-{{y}^{2}})2x}{{{\left( 1-{{x}^{2}} \right)}^{2}}} \right)\]
Multiplying both sides by $(1-{{x}^{2}})$ , we get
\[\begin{align}
& \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{(1-{{x}^{2}})(-2y)\dfrac{dy}{dx}+2x(1-{{y}^{2}})}{1-{{x}^{2}}} \right) \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}+4x(1-{{y}^{2}})}{1-{{x}^{2}}} \\
\end{align}\]
Separating the terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4y(1-{{x}^{2}})\dfrac{dy}{dx}}{1-{{x}^{2}}}+\dfrac{4x(1-{{y}^{2}})}{1-{{x}^{2}}}\]
Cancelling the like terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x\left[ 4\dfrac{(1-{{y}^{2}})}{1-{{x}^{2}}} \right]\]
Now substituting value from equation (ii), w eget
\[\Rightarrow \left( 1-{{x}^{2}} \right)\cdot \dfrac{dy}{dx}\cdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-4y\dfrac{dy}{dx}+x{{\left( \dfrac{dy}{dx} \right)}^{2}}\]
Taking out the common term, we get
\[\Rightarrow \dfrac{dy}{dx}\left[ \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right]=\dfrac{dy}{dx}\left[ -4y+x\left( \dfrac{dy}{dx} \right) \right]\]
Cancelling the like terms, we get
\[\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y\]
Hence proved.
Note: In these types of questions first of all you have to check the given expression before starting the differentiation because sometimes the given expression can be in modified form.
Another way of solving this type of problem is finding the first order and second order derivatives, then substituting in \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=x\dfrac{dy}{dx}-4y\], separately and find out whether left hand side is equal to right hand side. In this method also you will get the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

