
If a trigonometric expression is given as \[\sin \theta =n\sin \left( \theta +2\alpha \right)\] then \[\tan \left( \theta +\alpha \right)=\]
\[\left( a \right)\dfrac{1+n}{1-n}\tan \alpha \]
\[\left( b \right)\dfrac{1-n}{1+n}\tan \alpha \]
\[\left( c \right)\tan \alpha \]
\[\left( d \right)\text{None}\]
Answer
587.7k+ views
Hint: We are asked to find the value of \[\tan \left( \theta +\alpha \right),\] we start by simplifying \[\sin \theta =n\sin \left( \theta +2\alpha \right)\] as \[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=n.\] Then we can apply componendo and dividendo which says if \[\dfrac{a}{b}=\dfrac{c}{d}\] then \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.\] Then using \[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] and \[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right).\] We will simplify our terms at last. Then we will use \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\] to get our required solution.
Complete step-by-step solution:
We have been given in the question that \[\sin \theta =n\sin \left( \theta +2\alpha \right).\] On simplifying we get, \[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=n.\]
Now we will use componendo and dividendo rule which says that if \[\dfrac{a}{b}=\dfrac{c}{d}\] then \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.\] So, we apply this on our equation we got above, i.e. \[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{n}{1}.\] So, we get,
\[\dfrac{\sin \theta +\sin \left( \theta +2a \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{n+1}{n-1}\]
Now, we know the trigonometric formulas, i.e.
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\]
So, take A as \[\theta \] and B as \[\theta +2\alpha .\] So, we get,
\[\dfrac{n+1}{n-1}=\dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{2\sin \left( -\alpha \right)\cos \left( \theta +\alpha \right)}=\dfrac{n+1}{n-1}\]
Now we know that \[\cos \left( -\theta \right)=\cos \theta \] and \[\sin \left( -\theta \right)=-\sin \theta .\] So, we get,
\[\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \alpha }{-2\sin \alpha \cos \left( \theta +\alpha \right) }=\dfrac{n+1}{n-1}\]
Now, separating the terms, we get,
\[\Rightarrow \dfrac{-\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right) }.\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{n+1}{n-1}\]
As, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\] we get,
\[\Rightarrow \dfrac{-\tan \left( \theta +\alpha \right)}{\tan \alpha }=\dfrac{n+1}{n-1}\]
On shifting \[\tan \alpha \] we get,
\[\Rightarrow -\tan \left( \theta +\alpha \right) =\dfrac{n+1}{n-1}\tan \alpha \]
On multiplying both the sides, we get,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{-\left( n+1 \right)}{\left( n-1 \right)}\tan a\]
Now, $- (n – 1) = 1 – n$. So, we get,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{n+1}{1-n}\tan \alpha \]
Or it can be written as,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{1+n}{1-n}\tan \alpha \]
Hence, the right option is (a).
Note: Remember that \[\dfrac{\theta -\left( \theta +2\alpha \right)}{2}\] will give us \[\dfrac{\theta -\theta -2\alpha }{2}=\dfrac{0-2\alpha }{2}=-\alpha \] and \[\dfrac{\theta +\left( \theta +2\alpha \right)}{2}\] will give us \[\dfrac{\theta +\theta +2\alpha }{2}=\dfrac{2\theta +2\alpha }{2}=\theta +\alpha .\] Also, \[\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }}\] as \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta .\] So, \[\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }}=\dfrac{1}{\tan \alpha }.\] Lastly, always remember that the product of two negatives is always positive.
Complete step-by-step solution:
We have been given in the question that \[\sin \theta =n\sin \left( \theta +2\alpha \right).\] On simplifying we get, \[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=n.\]
Now we will use componendo and dividendo rule which says that if \[\dfrac{a}{b}=\dfrac{c}{d}\] then \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.\] So, we apply this on our equation we got above, i.e. \[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{n}{1}.\] So, we get,
\[\dfrac{\sin \theta +\sin \left( \theta +2a \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{n+1}{n-1}\]
Now, we know the trigonometric formulas, i.e.
\[\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\cos \left( \dfrac{A+B}{2} \right)\]
So, take A as \[\theta \] and B as \[\theta +2\alpha .\] So, we get,
\[\dfrac{n+1}{n-1}=\dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\left( \theta +2\alpha \right)}{2} \right)}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{2\sin \left( -\alpha \right)\cos \left( \theta +\alpha \right)}=\dfrac{n+1}{n-1}\]
Now we know that \[\cos \left( -\theta \right)=\cos \theta \] and \[\sin \left( -\theta \right)=-\sin \theta .\] So, we get,
\[\Rightarrow \dfrac{2\sin \left( \theta +\alpha \right)\cos \alpha }{-2\sin \alpha \cos \left( \theta +\alpha \right) }=\dfrac{n+1}{n-1}\]
Now, separating the terms, we get,
\[\Rightarrow \dfrac{-\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right) }.\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{n+1}{n-1}\]
As, \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta ,\] we get,
\[\Rightarrow \dfrac{-\tan \left( \theta +\alpha \right)}{\tan \alpha }=\dfrac{n+1}{n-1}\]
On shifting \[\tan \alpha \] we get,
\[\Rightarrow -\tan \left( \theta +\alpha \right) =\dfrac{n+1}{n-1}\tan \alpha \]
On multiplying both the sides, we get,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{-\left( n+1 \right)}{\left( n-1 \right)}\tan a\]
Now, $- (n – 1) = 1 – n$. So, we get,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{n+1}{1-n}\tan \alpha \]
Or it can be written as,
\[\Rightarrow \tan \left( \theta +\alpha \right)=\dfrac{1+n}{1-n}\tan \alpha \]
Hence, the right option is (a).
Note: Remember that \[\dfrac{\theta -\left( \theta +2\alpha \right)}{2}\] will give us \[\dfrac{\theta -\theta -2\alpha }{2}=\dfrac{0-2\alpha }{2}=-\alpha \] and \[\dfrac{\theta +\left( \theta +2\alpha \right)}{2}\] will give us \[\dfrac{\theta +\theta +2\alpha }{2}=\dfrac{2\theta +2\alpha }{2}=\theta +\alpha .\] Also, \[\dfrac{\cos \alpha }{\sin \alpha }=\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }}\] as \[\dfrac{\sin \theta }{\cos \theta }=\tan \theta .\] So, \[\dfrac{1}{\dfrac{\sin \alpha }{\cos \alpha }}=\dfrac{1}{\tan \alpha }.\] Lastly, always remember that the product of two negatives is always positive.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

