
If a trigonometric equation is given as $\cos x + \sin x = \sqrt 2 \cos x$ then show that $\cos x - \sin x = \sqrt 2 \sin x$ .
Answer
519.6k+ views
Hint: In this question, we use the basic trigonometric and algebraic identities. We have to apply some algebraic operations in the given question and then convert into the required equation. Like we use algebraic identities ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$.
Complete step-by-step solution:
Given, $\cos x + \sin x = \sqrt 2 \cos x..............\left( 1 \right)$
Now, squaring both sides in (1) equation.
$ \Rightarrow {\left( {\cos x + \sin x} \right)^2} = {\left( {\sqrt 2 \cos x} \right)^2}$
Now, we use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\cos ^2}x + {\sin ^2}x + 2 \times \cos x \times \sin x = 2{\cos ^2}x \\
\Rightarrow 2\cos x\sin x = 2{\cos ^2}x - {\cos ^2}x - {\sin ^2}x \\
\Rightarrow 2\cos x\sin x = {\cos ^2}x - {\sin ^2}x \\
$
Using algebraic identity, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$ \Rightarrow 2\cos x\sin x = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)$
From (1) equation, $\cos x + \sin x = \sqrt 2 \cos x$
$ \Rightarrow 2\cos x\sin x = \sqrt 2 \cos x\left( {\cos x - \sin x} \right)$
Now, $\cos x$ cancel from both sides.
$
\Rightarrow \sqrt 2 \left( {\cos x - \sin x} \right) = 2\sin x \\
\Rightarrow \cos x - \sin x = \dfrac{{2\sin x}}{{\sqrt 2 }} \\
\Rightarrow \cos x - \sin x = \sqrt 2 \sin x \\
$
Hence, it is proved $\cos x - \sin x = \sqrt 2 \sin x$
Note: In such types of problems we can use two different ways. First way we already mention in above and now in second way, we have to squaring both sides in given and then by using $\left( {\sin 2x = 2\sin x\cos x{\text{ and }}\cos 2x = 2{{\cos }^2}x - 1} \right)$ these identities we can get the value of x. So, after putting the value of x in question we will get the answer.
Complete step-by-step solution:
Given, $\cos x + \sin x = \sqrt 2 \cos x..............\left( 1 \right)$
Now, squaring both sides in (1) equation.
$ \Rightarrow {\left( {\cos x + \sin x} \right)^2} = {\left( {\sqrt 2 \cos x} \right)^2}$
Now, we use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\cos ^2}x + {\sin ^2}x + 2 \times \cos x \times \sin x = 2{\cos ^2}x \\
\Rightarrow 2\cos x\sin x = 2{\cos ^2}x - {\cos ^2}x - {\sin ^2}x \\
\Rightarrow 2\cos x\sin x = {\cos ^2}x - {\sin ^2}x \\
$
Using algebraic identity, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$ \Rightarrow 2\cos x\sin x = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)$
From (1) equation, $\cos x + \sin x = \sqrt 2 \cos x$
$ \Rightarrow 2\cos x\sin x = \sqrt 2 \cos x\left( {\cos x - \sin x} \right)$
Now, $\cos x$ cancel from both sides.
$
\Rightarrow \sqrt 2 \left( {\cos x - \sin x} \right) = 2\sin x \\
\Rightarrow \cos x - \sin x = \dfrac{{2\sin x}}{{\sqrt 2 }} \\
\Rightarrow \cos x - \sin x = \sqrt 2 \sin x \\
$
Hence, it is proved $\cos x - \sin x = \sqrt 2 \sin x$
Note: In such types of problems we can use two different ways. First way we already mention in above and now in second way, we have to squaring both sides in given and then by using $\left( {\sin 2x = 2\sin x\cos x{\text{ and }}\cos 2x = 2{{\cos }^2}x - 1} \right)$ these identities we can get the value of x. So, after putting the value of x in question we will get the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
