
If a trigonometric equation is given as $\cos x + \sin x = \sqrt 2 \cos x$ then show that $\cos x - \sin x = \sqrt 2 \sin x$ .
Answer
616.8k+ views
Hint: In this question, we use the basic trigonometric and algebraic identities. We have to apply some algebraic operations in the given question and then convert into the required equation. Like we use algebraic identities ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ and ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$.
Complete step-by-step solution:
Given, $\cos x + \sin x = \sqrt 2 \cos x..............\left( 1 \right)$
Now, squaring both sides in (1) equation.
$ \Rightarrow {\left( {\cos x + \sin x} \right)^2} = {\left( {\sqrt 2 \cos x} \right)^2}$
Now, we use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\cos ^2}x + {\sin ^2}x + 2 \times \cos x \times \sin x = 2{\cos ^2}x \\
\Rightarrow 2\cos x\sin x = 2{\cos ^2}x - {\cos ^2}x - {\sin ^2}x \\
\Rightarrow 2\cos x\sin x = {\cos ^2}x - {\sin ^2}x \\
$
Using algebraic identity, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$ \Rightarrow 2\cos x\sin x = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)$
From (1) equation, $\cos x + \sin x = \sqrt 2 \cos x$
$ \Rightarrow 2\cos x\sin x = \sqrt 2 \cos x\left( {\cos x - \sin x} \right)$
Now, $\cos x$ cancel from both sides.
$
\Rightarrow \sqrt 2 \left( {\cos x - \sin x} \right) = 2\sin x \\
\Rightarrow \cos x - \sin x = \dfrac{{2\sin x}}{{\sqrt 2 }} \\
\Rightarrow \cos x - \sin x = \sqrt 2 \sin x \\
$
Hence, it is proved $\cos x - \sin x = \sqrt 2 \sin x$
Note: In such types of problems we can use two different ways. First way we already mention in above and now in second way, we have to squaring both sides in given and then by using $\left( {\sin 2x = 2\sin x\cos x{\text{ and }}\cos 2x = 2{{\cos }^2}x - 1} \right)$ these identities we can get the value of x. So, after putting the value of x in question we will get the answer.
Complete step-by-step solution:
Given, $\cos x + \sin x = \sqrt 2 \cos x..............\left( 1 \right)$
Now, squaring both sides in (1) equation.
$ \Rightarrow {\left( {\cos x + \sin x} \right)^2} = {\left( {\sqrt 2 \cos x} \right)^2}$
Now, we use ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$
\Rightarrow {\cos ^2}x + {\sin ^2}x + 2 \times \cos x \times \sin x = 2{\cos ^2}x \\
\Rightarrow 2\cos x\sin x = 2{\cos ^2}x - {\cos ^2}x - {\sin ^2}x \\
\Rightarrow 2\cos x\sin x = {\cos ^2}x - {\sin ^2}x \\
$
Using algebraic identity, ${a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)$
$ \Rightarrow 2\cos x\sin x = \left( {\cos x + \sin x} \right)\left( {\cos x - \sin x} \right)$
From (1) equation, $\cos x + \sin x = \sqrt 2 \cos x$
$ \Rightarrow 2\cos x\sin x = \sqrt 2 \cos x\left( {\cos x - \sin x} \right)$
Now, $\cos x$ cancel from both sides.
$
\Rightarrow \sqrt 2 \left( {\cos x - \sin x} \right) = 2\sin x \\
\Rightarrow \cos x - \sin x = \dfrac{{2\sin x}}{{\sqrt 2 }} \\
\Rightarrow \cos x - \sin x = \sqrt 2 \sin x \\
$
Hence, it is proved $\cos x - \sin x = \sqrt 2 \sin x$
Note: In such types of problems we can use two different ways. First way we already mention in above and now in second way, we have to squaring both sides in given and then by using $\left( {\sin 2x = 2\sin x\cos x{\text{ and }}\cos 2x = 2{{\cos }^2}x - 1} \right)$ these identities we can get the value of x. So, after putting the value of x in question we will get the answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

