
If $A \times B = \{ (a,x),(a,y),(b,x),(b,y)\} $. Find A and B.
Answer
510.6k+ views
Hint: At first using the formula$P \times Q = \{ (p,q):p \in P,q \in Q\} $ we will find elements that belongs to sets A and B respectively. Then using those elements we will find the particular set i.e. A and B and finding those sets is the task we need to get the answer.
Complete step by step solution: Given data: $A \times B = \{ (a,x),(a,y),(b,x),(b,y)\} $
Now we know that if we have two sets let P and Q then
$(P \times Q)$ is defined as a relation, $(P \to Q)$ where the elements of $(P \times Q)$ will be in the form (p,q) where
$p \in P$ and $q \in Q$.
$P \times Q = \{ (p,q):p \in P,q \in Q\} $
Therefore from the given data i.e. $A \times B = \{ (a,x),(a,y),(b,x),(b,y)\} $
We can say that $a,b \in A$ and, $x,y \in B$
Therefore from the above statement, we can say that
$A = \{ a,b\} $, And $B = \{ x,y\} $
Note: We know that if two sets let X and Y have m and n numbers of elements respectively then the number of elements in the sets $(X \times Y)$ or $(Y \times X)$ will be the product of the number of elements in the respective sets i.e. mn.
Therefore we can also verify our answer using the above statement as
$n(A \times B) = 4$
And from the answer we have $n(A) = 2$ and, $n(B) = 2$
Since $n(B) \times n(A) = 4$ hence it satisfies the statement we mentioned.
Complete step by step solution: Given data: $A \times B = \{ (a,x),(a,y),(b,x),(b,y)\} $
Now we know that if we have two sets let P and Q then
$(P \times Q)$ is defined as a relation, $(P \to Q)$ where the elements of $(P \times Q)$ will be in the form (p,q) where
$p \in P$ and $q \in Q$.
$P \times Q = \{ (p,q):p \in P,q \in Q\} $
Therefore from the given data i.e. $A \times B = \{ (a,x),(a,y),(b,x),(b,y)\} $
We can say that $a,b \in A$ and, $x,y \in B$
Therefore from the above statement, we can say that
$A = \{ a,b\} $, And $B = \{ x,y\} $
Note: We know that if two sets let X and Y have m and n numbers of elements respectively then the number of elements in the sets $(X \times Y)$ or $(Y \times X)$ will be the product of the number of elements in the respective sets i.e. mn.
Therefore we can also verify our answer using the above statement as
$n(A \times B) = 4$
And from the answer we have $n(A) = 2$ and, $n(B) = 2$
Since $n(B) \times n(A) = 4$ hence it satisfies the statement we mentioned.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
