
If $A = \sin {15^\circ } + \cos {15^\circ },B = \tan {15^\circ } + \cot {15^\circ },C = \tan 22{\dfrac{1}{2}^\circ } - \cot 22{\dfrac{1}{2}^\circ }$ then the descending order is(a) A,B,C(b) B,A,C(c) C,B,A(d) B,C,A
Answer
575.4k+ views
Hint: For finding the value of $\sin {15^\circ }$ use $\sin (a - b) = \sin a\cos b - \cos a\sin b$ , If we put $a = {45^\circ },b = {30^\circ }$ then we will find the value of $\sin {15^\circ }$hence $\cos {15^\circ } = \sqrt {1 - {{\sin }^2}{{15}^\circ }} $ . Now for the $\tan {15^\circ }$ use trigonometric identity $\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$ If we put $a = {45^\circ },b = {30^\circ }$ from this get the value of $\tan {15^\circ }$and $\cot {15^\circ }$. Now for the $\tan 22{\dfrac{1}{2}^\circ }$ we know that from the trigonometric identities $\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$ If we put $a = 22{\dfrac{1}{2}^\circ }$ = ${22.5^\circ }$ and take $\tan {22.5^\circ } = x$. Now solve, we can get the value of x.
Complete step-by-step answer:
Note: In the finding the value of $\tan ({15^\circ })$ we will also the formula $\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$ by putting the value of $a = {15^\circ }$ hence solve it as we solve in finding the value of value of $\tan 22{\dfrac{1}{2}^\circ }$ but this method is quite difficult in calculation part .
Complete step-by-step answer:
As we know from the trigonometry identity ,
$\sin (a - b) = \sin a\cos b - \cos a\sin b$
If we put $a = {45^\circ },b = {30^\circ }$ then
$\sin ({45^\circ } - {30^\circ }) = \sin {45^\circ }\cos {30^\circ } - \cos {45^\circ }\sin {30^\circ }$
or we know that $\sin {45^\circ } = \dfrac{1}{{\sqrt 2 }}$ , $\cos {30^\circ } = \dfrac{{\sqrt 3 }}{2}$ , $\cos {45^\circ } = \dfrac{1}{{\sqrt 2 }}$ , $\sin {30^\circ } = \dfrac{1}{2}$
By putting these values in above equation we get ,
$\sin ({15^\circ }) = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
$\sin {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now we know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$ or we can write as $\cos \theta = \sqrt {1 - {{\sin }^2}\theta } $
$\cos {15^\circ } = \sqrt {1 - {{\sin }^2}{{15}^\circ }} $
$\cos {15^\circ } = \sqrt {1 - {{\left( {\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}} \right)}^2}} $
As we know that ${(2\sqrt 2 )^2} = 8$
$\cos {15^\circ } = \sqrt {1 - \dfrac{{{{(\sqrt 3 - 1)}^2}}}{8}} $
$\cos {15^\circ } = \sqrt {\dfrac{{8 - {{(\sqrt 3 - 1)}^2}}}{8}} $
As we know that the ${(\sqrt 3 - 1)^2} = 3 + 1 - 2\sqrt 3 $
$\cos {15^\circ } = \sqrt {\dfrac{{8 - (3 + 1 - 2\sqrt 3 )}}{8}} $
$\cos {15^\circ } = \sqrt {\dfrac{{4 + 2\sqrt 3 }}{8}} $
$\cos {15^\circ } = \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}$
$A = \sin {15^\circ } + \cos {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}$
Hence for the $\tan {15^\circ }$ we know that from the trigonometric identities
$\tan (a - b) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$
If we put $a = {45^\circ },b = {30^\circ }$ then
$\tan ({45^\circ } - {30^\circ }) = \dfrac{{\tan {{45}^\circ } - \tan {{30}^\circ }}}{{1 + \tan {{45}^\circ }\tan {{30}^\circ }}}$
We know that $\tan {45^\circ } = 1,\tan {30^\circ } = \dfrac{1}{{\sqrt 3 }}$ putting these values in the above equation
$\tan ({15^\circ }) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + 1.\dfrac{1}{{\sqrt 3 }}}}$
Take LCM
$\tan ({15^\circ }) = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 }}}}$
Now $\sqrt 3 $ is common in both numerator and denominator hence it will cancel out , we get
$\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$
Now multiply by $\sqrt 3 - 1$ on both numerator and denominator for rationalisation ,
$\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}}$
After solving this we get ,
$\tan ({15^\circ }) = \dfrac{{{{(\sqrt 3 - 1)}^2}}}{2}$ or $\tan ({15^\circ }) = \dfrac{{4 - 2\sqrt 3 }}{2}$
or $\tan {15^\circ } = 2 - \sqrt 3 $
$\cot {15^\circ } = \dfrac{1}{{\tan {{15}^\circ }}} = \dfrac{1}{{2 - \sqrt 3 }}$
Now multiply by $2 + \sqrt 3 $ in both denominator and numerator for rationalisation
\[\cot {15^\circ } = \dfrac{1}{{2 - \sqrt 3 }} \times \dfrac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}\]
on further solving we get ,
\[\cot {15^\circ } = 2 + \sqrt 3 \]
$B = \tan {15^\circ } + \cot {15^\circ } = 2 - \sqrt 3 + 2 + \sqrt 3 = 4$
Hence for the $\tan 22{\dfrac{1}{2}^\circ }$ we know that from the trigonometric identities
$\tan (2a) = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$
If we put $a = 22{\dfrac{1}{2}^\circ }$ = ${22.5^\circ }$ then
$\tan (2 \times {22.5^\circ }) = \dfrac{{2\tan {{22.5}^\circ }}}{{1 - {{\tan }^2}{{22.5}^\circ }}}$
$\tan ({45^\circ }) = \dfrac{{2\tan {{22.5}^\circ }}}{{1 - {{\tan }^2}{{22.5}^\circ }}}$
let us take $\tan {22.5^\circ } = x$ then and we know that $\tan {45^\circ } = 1$
$1 = \dfrac{{2x}}{{1 - {x^2}}}$
${x^2} + 2x - 1 = 0$
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} = \dfrac{{ - 2 \pm \sqrt {4 + 4} }}{2}$
As $\tan {22.5^\circ } = x$ hence $\tan {22.5^\circ }$ is in the present in the first quadrant hence positive sign will be considered , negative will be ignored .
$\tan {22.5^\circ } = \dfrac{{ - 2 + \sqrt 8 }}{2} = - 1 + \sqrt 2 $
$\cot {22.5^\circ } = \dfrac{1}{{\tan {{22.5}^\circ }}} = \dfrac{1}{{ - 1 + \sqrt 2 }}$
Now multiple by $ - 1 - \sqrt 2 $ in both denominator and numerator for rationalisation
\[\cot {22.5^\circ } = \dfrac{1}{{ - 1 + \sqrt 2 }} \times \dfrac{{ - 1 - \sqrt 2 }}{{ - 1 - \sqrt 2 }}\]
on further solving we get ,
\[\cot {22.5^\circ } = \dfrac{{ - (1 + \sqrt 2 )}}{{{{( - 1)}^2} - {{(\sqrt 2 )}^2}}} = 1 + \sqrt 2 \]
$C = \tan 22{\dfrac{1}{2}^\circ } - \cot 22{\dfrac{1}{2}^\circ } = - 1 + \sqrt 2 - (1 + \sqrt 2 ) = - 2$
Hence from above we get
$A = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}$
$B = 4$
$C = - 2$
As C is the negative hence it is smallest .
In \[A = \sin {15^\circ } + \cos {15^\circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + \dfrac{{\sqrt {4 + 2\sqrt 3 } }}{{2\sqrt 2 }}\] hence the max value of Sin and Cos is $1$ it did not be greater than $2$ at any cost hence , B is the greatest than A and at last C , C < A < B or In descending order B,A,C.
So, the correct answer is “Option (b)”.
Always do rationalisation when we have to compare the values as here $\tan ({15^\circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}$ if we didn't rationalise then it quite difficult to compare it with other values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

