
If a = secx-tanx and b = cosecx+cotx, then show that ab+a-b+1 =0.
Answer
610.5k+ views
Hint: Convert the expression $ab+a-b+1$ in terms of x. Hence convert the resulting expression in terms of sines and cosines. Take sinxcosx as L.C.M in the resulting expression and expand the products in the numerator. Use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to simplify the expression and hence prove that ab+a-b+1 =0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

