
If a = secx-tanx and b = cosecx+cotx, then show that ab+a-b+1 =0.
Answer
594.9k+ views
Hint: Convert the expression $ab+a-b+1$ in terms of x. Hence convert the resulting expression in terms of sines and cosines. Take sinxcosx as L.C.M in the resulting expression and expand the products in the numerator. Use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to simplify the expression and hence prove that ab+a-b+1 =0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

