
If a = secx-tanx and b = cosecx+cotx, then show that ab+a-b+1 =0.
Answer
595.8k+ views
Hint: Convert the expression $ab+a-b+1$ in terms of x. Hence convert the resulting expression in terms of sines and cosines. Take sinxcosx as L.C.M in the resulting expression and expand the products in the numerator. Use the fact that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to simplify the expression and hence prove that ab+a-b+1 =0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Complete step-by-step answer:
Let S = ab+a-b+1
Substituting the values of a and b , we get
S = (secx-tanx)(cosecx+cotx)+secx-tanx-(cosecx+cotx) +1
Converting to sines and cosines using $\sec x=\dfrac{1}{\cos x},\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}$ and $\tan x=\dfrac{\sin x}{\cos x}$, we get
S $=\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+\left( \dfrac{1}{\cos x}-\dfrac{\sin x}{\cos x} \right)-\left( \dfrac{1}{\sin x}+\dfrac{\cos x}{\sin x} \right)+1$
Hence, we have
S $=\dfrac{1-\sin x}{\cos x}\times \dfrac{1+\cos x}{\sin x}+\dfrac{1-\sin x}{\cos x}-\dfrac{1+\cos x}{\sin x}+1$
Taking sinxcosx as L.C.M., we get
S $=\dfrac{\left( 1-\sin x \right)\left( 1+\cos x \right)+\left( 1-\sin x \right)\sin x-\left( 1+\cos x \right)\cos x}{\sin x\cos x}+1$
Expanding using the distributive property of multiplication over addition and subtraction, we get
S $=\dfrac{1-\sin x+\cos x-\cos x\sin x+\sin x-{{\sin }^{2}}x-\cos x-{{\cos }^{2}}x}{\sin x\cos x}+1$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
S $=\dfrac{1-1-\cos x\sin x}{\cos x\sin x}+1$
Hence, we have S = -1+1 = 0
Hence S = 0.
i.e. ab+a-b+1 =0
Note: Alternative solution: Best method:
We have $ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2\text{ (i)}$
Now, we have $a-1=\sec x-\tan x-1=\dfrac{1-\sin x-\cos x}{\cos x}$ and $b+1=\csc x+\cot x+1=\dfrac{1+\cos x+\sin x}{\sin x}$
Hence, we have $\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( \sin x+\cos x \right)}{\cos x}\times \dfrac{1+\left( \sin x+\cos x \right)}{\sin x}$
We know that $\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
Using the above algebraic identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-{{\left( \sin x+\cos x \right)}^{2}}}{\sin x\cos x}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-\left( {{\sin }^{2}}x+{{\cos }^{2}}x+2\sin x\cos x \right)}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Using the above identity, we get
$\left( a-1 \right)\left( b+1 \right)=\dfrac{1-1-2\sin x\cos x}{\sin x\cos x}=-2$
Hence from equation (i), we have
$ab+a-b+1=\left( a-1 \right)\left( b+1 \right)+2=-2+2=0$
Hence, we have ab+a-b+1 = 0.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

