
If a polynomial in x is given by $f\left( x \right)$ is a polynomial in x, then the second derivative of $f\left( {{e}^{x}} \right)$ at $x=1$ is
(A). $ef''\left( e \right)+f'\left( e \right)$
(B). $\left( f''\left( e \right)+f'\left( e \right) \right){{e}^{2}}$
(C). ${{e}^{2}}f''\left( e \right)$
(D). $\left( f''\left( e \right)e+f'\left( e \right) \right)e$
Answer
539.1k+ views
Hint: Here, we should know the three important formula of derivative which is $\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ , $\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=g'\left( x \right)\cdot f'\left( g\left( x \right) \right)$ ; $\dfrac{d}{dx}\left[ g\left( x \right)\cdot h\left( x \right) \right]=g\left( x \right)\cdot h'\left( x \right)+h\left( x \right)\cdot g'\left( x \right)$ . We have to find second order derivative of $\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]$ . After getting the final answer we will replace the value of x as 1 wherever x is present in the answer.
Complete step-by-step solution -
Now, here we have to find second order derivative of $\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]$ . So, there are basically 3 formulas which will be used here.
$\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ ……………………………….(1)
$\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=g'\left( x \right)\cdot f'\left( g\left( x \right) \right)$ ………………………..(2)
$\dfrac{d}{dx}\left[ g\left( x \right)\cdot h\left( x \right) \right]=g\left( x \right)\cdot h'\left( x \right)+h\left( x \right)\cdot g'\left( x \right)$ ……………………………..(3)
So, first we will find a first order derivative i.e. $\dfrac{d}{dx}f\left( {{e}^{x}} \right)$ . So, we will use here equation(1) and (2) where $g\left( x \right)={{e}^{x}}$ . So, applying the formula we will get
$\dfrac{d}{dx}f\left( {{e}^{x}} \right)={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)$ ………………………….(4)
Now, keeping this value of equation (4) into our main equation to find second derivative i.e.
$\dfrac{d}{dx}\left[ {{e}^{x}}\cdot f'\left( {{e}^{x}} \right) \right]$
So, here using equation (3) as we have 3 terms i.e. $g\left( x \right)={{e}^{x}},h\left( x \right)=f'\left( {{e}^{x}} \right)$
So, applying the formula we get
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right) \right]\cdot {{e}^{x}}$ ……………………………(5)
As we can see in the above equation after plus sign there is the term which we have to derive using the formula given in equation (2). So, derivation of that particular term will be
$\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f''\left( {{e}^{x}} \right)$
So, substituting this value back into equation (5), we get as
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+{{e}^{x}}\cdot f''\left( {{e}^{x}} \right)\cdot {{e}^{x}}$
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+{{e}^{2x}}\cdot f''\left( {{e}^{x}} \right)$ …………………………(6)
Now, putting value $x=1$ in equation (6) we get it as
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]=e\cdot f'\left( e \right)+{{e}^{2}}\cdot f''\left( e \right)$
On taking e common from the term, we get
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]=e\left( f'\left( e \right)+e\cdot f''\left( e \right) \right)$
Thus, we got the second order derivative as $e\left( f'\left( e \right)+e\cdot f''\left( e \right) \right)$
Hence, option (d) is the correct answer.
Note: Remember all the formulas and rules which are used in this type of sum. There are chances of mistakes when you consider $f\left( {{e}^{x}} \right)$ as $f\left( x \right)$ . So, first derivative will be $\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ and again taking second derivative will give answer as ${{e}^{x}}$ , if we use the property $\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ . So, this is not the correct method. You have to consider two different variables as shown in the given solution.
Complete step-by-step solution -
Now, here we have to find second order derivative of $\dfrac{d}{dx}\left[ \dfrac{d}{dx}f\left( {{e}^{x}} \right) \right]$ . So, there are basically 3 formulas which will be used here.
$\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ ……………………………….(1)
$\dfrac{d}{dx}\left[ f\left( g\left( x \right) \right) \right]=g'\left( x \right)\cdot f'\left( g\left( x \right) \right)$ ………………………..(2)
$\dfrac{d}{dx}\left[ g\left( x \right)\cdot h\left( x \right) \right]=g\left( x \right)\cdot h'\left( x \right)+h\left( x \right)\cdot g'\left( x \right)$ ……………………………..(3)
So, first we will find a first order derivative i.e. $\dfrac{d}{dx}f\left( {{e}^{x}} \right)$ . So, we will use here equation(1) and (2) where $g\left( x \right)={{e}^{x}}$ . So, applying the formula we will get
$\dfrac{d}{dx}f\left( {{e}^{x}} \right)={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)$ ………………………….(4)
Now, keeping this value of equation (4) into our main equation to find second derivative i.e.
$\dfrac{d}{dx}\left[ {{e}^{x}}\cdot f'\left( {{e}^{x}} \right) \right]$
So, here using equation (3) as we have 3 terms i.e. $g\left( x \right)={{e}^{x}},h\left( x \right)=f'\left( {{e}^{x}} \right)$
So, applying the formula we get
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right) \right]\cdot {{e}^{x}}$ ……………………………(5)
As we can see in the above equation after plus sign there is the term which we have to derive using the formula given in equation (2). So, derivation of that particular term will be
$\dfrac{d}{dx}\left[ f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f''\left( {{e}^{x}} \right)$
So, substituting this value back into equation (5), we get as
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+{{e}^{x}}\cdot f''\left( {{e}^{x}} \right)\cdot {{e}^{x}}$
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]={{e}^{x}}\cdot f'\left( {{e}^{x}} \right)+{{e}^{2x}}\cdot f''\left( {{e}^{x}} \right)$ …………………………(6)
Now, putting value $x=1$ in equation (6) we get it as
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]=e\cdot f'\left( e \right)+{{e}^{2}}\cdot f''\left( e \right)$
On taking e common from the term, we get
$\Rightarrow \dfrac{d}{dx}\left[ {{e}^{x}}.f'\left( {{e}^{x}} \right) \right]=e\left( f'\left( e \right)+e\cdot f''\left( e \right) \right)$
Thus, we got the second order derivative as $e\left( f'\left( e \right)+e\cdot f''\left( e \right) \right)$
Hence, option (d) is the correct answer.
Note: Remember all the formulas and rules which are used in this type of sum. There are chances of mistakes when you consider $f\left( {{e}^{x}} \right)$ as $f\left( x \right)$ . So, first derivative will be $\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ and again taking second derivative will give answer as ${{e}^{x}}$ , if we use the property $\dfrac{d}{dx}\left( {{e}^{x}} \right)={{e}^{x}}$ . So, this is not the correct method. You have to consider two different variables as shown in the given solution.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
