Answer
Verified
456.9k+ views
Hint: If you rearrange the equation given in the question, you will get $\tan A=\dfrac{-4}{3}$ . Then find the value of all the trigonometric ratios for angle $A$ starting with the value of $\sec A$ using the relation that the difference of squares of secant and tangent function is equal to 1. Now once you have got the value of $\sec A$, you can easily find other trigonometric ratios using the relation between the trigonometric ratios. Once you get the value of all the ratios, put the values in the expression $2\cot A-5\cos A+\sin A$ to get the required result.
Complete step-by-step answer:
We can observe that the angle A is on the second quadrant where we observe that tangent of the angle A is negative of the tangent of the angle $\angle POQ$ whose value is given here as
\[3\tan A + 4 = 0 \Rightarrow \tan A = \dfrac{{ - 4}}{3}\]
So we have,
\[\tan A=\tan \left( \pi -\angle POQ \right)=\dfrac{-4}{3}\]
We will now start with the solution to the above question by finding the value of the secant function.
We know that ${{\sec }^{2}}A=1+{{\tan }^{2}}A.$ So, if we put the value of $\tan A$ in the formula, we get
\[\begin{align}
& se{{c}^{2}}A=1+{{\left( -\dfrac{4}{3} \right)}^{2}} \\
& \Rightarrow se{{c}^{2}}A=1+\dfrac{16}{9} \\
& \Rightarrow {{\sec }^{2}}A=\dfrac{25}{9} \\
\end{align}\]
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
\[\Rightarrow \sec A=\pm \sqrt{\dfrac{25}{9}}=\pm \dfrac{5}{3}\]
Now, as it is given that A lies in the second quadrant and $\sec A$ is negative in the second quadrant. So we have $\sec A=-\dfrac{5}{3}$. Now we know that $\cos A$ is reciprocal of $\sec A$.
\[\therefore \cos A=\dfrac{1}{\sec A}=-\dfrac{3}{5}\]
Now using the property that $\tan A$ is the ratio of $\sin A$ to $\cos A$, we get
\[\begin{align}
& \tan A=\dfrac{\sin A}{\cos A} \\
& \Rightarrow \tan A\cos A=\sin A \\
&\Rightarrow \operatorname{sinA}=-\dfrac{4}{3}\times \left( -\dfrac{3}{5} \right)=\dfrac{4}{5} \\
\end{align}\]
Now we know that $\cot A$ is the reciprocal of $\tan A$. So, we can conclude that: $\cot A=\dfrac{1}{\tan A}=-\dfrac{3}{4}$ Also, we know $\operatorname{cosec}A$ is the reciprocal of $\sin A$.
\[\therefore \cos ecA=\dfrac{1}{\sin A}=\dfrac{5}{4}\]
Now let us move to the expression $2\cot A-5\cos A+\sin A$ . So, if we put the values in the expression, we get
\[ \begin{align}
& 2\cot A-5\cos A+\sin A \\
& =2\left( -\dfrac{3}{4} \right)-5\left( -\dfrac{3}{5} \right)+\dfrac{4}{5} \\
& =-\dfrac{3}{2}+3+\dfrac{4}{5} \\
& =\dfrac{-15+30+8}{10}=\dfrac{23}{10} \\
\end{align}\]
Hence, we have shown that the value of $2\cot A-5\cos A+\sin A$ is $\dfrac{23}{10}$
Note: It is not necessary that you find all the values of all trigonometric ratios, rather you can solve by finding the values of only those trigonometric ratios which are needed to solve the expression which would save you time. The other important thing is to keep in mind the signs of different trigonometric ratios in different quadrants as they are used very often.
Complete step-by-step answer:
We can observe that the angle A is on the second quadrant where we observe that tangent of the angle A is negative of the tangent of the angle $\angle POQ$ whose value is given here as
\[3\tan A + 4 = 0 \Rightarrow \tan A = \dfrac{{ - 4}}{3}\]
So we have,
\[\tan A=\tan \left( \pi -\angle POQ \right)=\dfrac{-4}{3}\]
We will now start with the solution to the above question by finding the value of the secant function.
We know that ${{\sec }^{2}}A=1+{{\tan }^{2}}A.$ So, if we put the value of $\tan A$ in the formula, we get
\[\begin{align}
& se{{c}^{2}}A=1+{{\left( -\dfrac{4}{3} \right)}^{2}} \\
& \Rightarrow se{{c}^{2}}A=1+\dfrac{16}{9} \\
& \Rightarrow {{\sec }^{2}}A=\dfrac{25}{9} \\
\end{align}\]
Now we know that ${{a}^{2}}=b$ implies $a=\pm \sqrt{b}$ . So, our equation becomes:
\[\Rightarrow \sec A=\pm \sqrt{\dfrac{25}{9}}=\pm \dfrac{5}{3}\]
Now, as it is given that A lies in the second quadrant and $\sec A$ is negative in the second quadrant. So we have $\sec A=-\dfrac{5}{3}$. Now we know that $\cos A$ is reciprocal of $\sec A$.
\[\therefore \cos A=\dfrac{1}{\sec A}=-\dfrac{3}{5}\]
Now using the property that $\tan A$ is the ratio of $\sin A$ to $\cos A$, we get
\[\begin{align}
& \tan A=\dfrac{\sin A}{\cos A} \\
& \Rightarrow \tan A\cos A=\sin A \\
&\Rightarrow \operatorname{sinA}=-\dfrac{4}{3}\times \left( -\dfrac{3}{5} \right)=\dfrac{4}{5} \\
\end{align}\]
Now we know that $\cot A$ is the reciprocal of $\tan A$. So, we can conclude that: $\cot A=\dfrac{1}{\tan A}=-\dfrac{3}{4}$ Also, we know $\operatorname{cosec}A$ is the reciprocal of $\sin A$.
\[\therefore \cos ecA=\dfrac{1}{\sin A}=\dfrac{5}{4}\]
Now let us move to the expression $2\cot A-5\cos A+\sin A$ . So, if we put the values in the expression, we get
\[ \begin{align}
& 2\cot A-5\cos A+\sin A \\
& =2\left( -\dfrac{3}{4} \right)-5\left( -\dfrac{3}{5} \right)+\dfrac{4}{5} \\
& =-\dfrac{3}{2}+3+\dfrac{4}{5} \\
& =\dfrac{-15+30+8}{10}=\dfrac{23}{10} \\
\end{align}\]
Hence, we have shown that the value of $2\cot A-5\cos A+\sin A$ is $\dfrac{23}{10}$
Note: It is not necessary that you find all the values of all trigonometric ratios, rather you can solve by finding the values of only those trigonometric ratios which are needed to solve the expression which would save you time. The other important thing is to keep in mind the signs of different trigonometric ratios in different quadrants as they are used very often.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it