
If A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$, then what is the value of $\dfrac{{\text{A}}}{{\text{B}}}$?
$
{\text{A}}{\text{. }} - 1 \\
{\text{B}}{\text{. 0}} \\
{\text{C}}{\text{. 1}} \\
{\text{D}}{\text{. 2}} \\
$
Answer
588.3k+ views
Hint- Here, we will proceed by using the formulas $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$ in order to simplify the expression $\dfrac{{\text{A}}}{{\text{B}}}$.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

