
If A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$, then what is the value of $\dfrac{{\text{A}}}{{\text{B}}}$?
$
{\text{A}}{\text{. }} - 1 \\
{\text{B}}{\text{. 0}} \\
{\text{C}}{\text{. 1}} \\
{\text{D}}{\text{. 2}} \\
$
Answer
595.2k+ views
Hint- Here, we will proceed by using the formulas $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$ in order to simplify the expression $\dfrac{{\text{A}}}{{\text{B}}}$.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

