
If A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$, then what is the value of $\dfrac{{\text{A}}}{{\text{B}}}$?
$
{\text{A}}{\text{. }} - 1 \\
{\text{B}}{\text{. 0}} \\
{\text{C}}{\text{. 1}} \\
{\text{D}}{\text{. 2}} \\
$
Answer
613.8k+ views
Hint- Here, we will proceed by using the formulas $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$ in order to simplify the expression $\dfrac{{\text{A}}}{{\text{B}}}$.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Complete step-by-step answer:
Given, A = $\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)$ and B = $\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)$
The expression whose value is needed can be obtained by dividing A by B as shown under $
\dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left( {\sin {{96}^0} + \sin {{24}^0}} \right)}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left( {\cos {{48}^0} - \cos {{72}^0}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\sin \left( {{{90}^0} + {6^0}} \right) + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {\cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right)} \right]}}{\text{ }} \to {\text{(1)}} \\
$
Using the formula $\sin \left( {{{90}^0} + \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} + {6^0}} \right) = \cos {6^0}{\text{ }} \to {\text{(2)}}$
As we know that $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} - \sin {\text{A}}\sin {\text{B}}$ and $\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$
Using the above formulas, we can write
$\cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} - \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(3)}}$ and $\cos \left( {{{60}^0} - {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0}{\text{ }} \to {\text{(4)}}$
By subtracting equation (3) from equation (4), we get
$
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \left( {\cos {{60}^0}\cos {{12}^0} - \sin {{60}^0}\sin {{12}^0}} \right) \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} - \cos {60^0}\cos {12^0} + \sin {60^0}\sin {12^0} \\
\Rightarrow \cos \left( {{{60}^0} - {{12}^0}} \right) - \cos \left( {{{60}^0} + {{12}^0}} \right) = 2\sin {60^0}\sin {12^0}{\text{ }} \to {\text{(5)}} \\
$
By substituting equations (2) and (5) in equation (1), we have
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin {{24}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \sin \left( {{{90}^0} - {{66}^0}} \right)} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(6)}} \\
$
Using the formula $\sin \left( {{{90}^0} - \theta } \right) = \cos \theta $, we can write
$\sin \left( {{{90}^0} - {{66}^0}} \right) = \cos {66^0}{\text{ }} \to {\text{(7)}}$
By substituting equation (7) in equation (6), we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\cos {{12}^0} - \cos {{36}^0}} \right)\left[ {\cos {6^0} + \cos {{66}^0}} \right]}}{{\left( {\sin {{60}^0} - \sin {{12}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}}{\text{ }} \to {\text{(8)}}$
Using the formulas $\cos {\text{A}} + \cos {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\cos \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$, $\cos {\text{A}} - \cos {\text{B}} = - 2\sin \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ and $\sin {\text{A}} - \sin {\text{B}} = 2\cos \left( {\dfrac{{{\text{A}} + {\text{B}}}}{2}} \right)\sin \left( {\dfrac{{{\text{A}} - {\text{B}}}}{2}} \right)$ , we can write
$
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{6^0} + {{66}^0}}}{2}} \right)\cos \left( {\dfrac{{{6^0} - {{66}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\cos \left( {\dfrac{{ - {{60}^0}}}{2}} \right) \\
\Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos \left( { - {{30}^0}} \right) \\
$
Since, $\cos \left( { - \theta } \right) = \cos \theta $
$ \Rightarrow \cos {6^0} + \cos {66^0} = 2\cos {36^0}\cos {30^0}{\text{ }} \to {\text{(9)}}$
Similarly,
$
\cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{12}^0} + {{36}^0}}}{2}} \right)\sin \left( {\dfrac{{{{12}^0} - {{36}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin \left( {\dfrac{{{{48}^0}}}{2}} \right)\sin \left( {\dfrac{{ - {{24}^0}}}{2}} \right) \\
\Rightarrow \cos {12^0} - \cos {36^0} = - 2\sin {24^0}\sin \left( { - {{12}^0}} \right) \\
$
Using the formula $\sin \left( { - \theta } \right) = - \sin \theta $ in the above equation, we get
$ \Rightarrow \cos {12^0} - \cos {36^0} = 2\sin {24^0}\sin {12^0}{\text{ }} \to {\text{(10)}}$
Similarly,
$
\sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{60}^0} + {{12}^0}}}{2}} \right)\sin \left( {\dfrac{{{{60}^0} - {{12}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos \left( {\dfrac{{{{72}^0}}}{2}} \right)\sin \left( {\dfrac{{{{48}^0}}}{2}} \right) \\
\Rightarrow \sin {60^0} - \sin {12^0} = 2\cos {36^0}\sin {24^0}{\text{ }} \to {\text{(11)}} \\
$
By substituting equations (9), (10) and (11) in equation (8), we get
\[
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {2\sin {{24}^0}\sin {{12}^0}} \right)\left[ {2\cos {{36}^0}\cos {{30}^0}} \right]}}{{\left( {2\cos {{36}^0}\sin {{24}^0}} \right)\left[ {2\sin {{60}^0}\sin {{12}^0}} \right]}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\cos {{30}^0}}}{{\sin {{60}^0}}} \\
\]
Using $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$ and $\cos {30^0} = \dfrac{{\sqrt 3 }}{2}$ in the above equation, we get
$
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = \dfrac{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}} \\
\Rightarrow \dfrac{{\text{A}}}{{\text{B}}} = 1 \\
$
Therefore, the value of $\dfrac{{\text{A}}}{{\text{B}}}$ is equal to 1.
Hence, option C is correct.
Note- In this particular problem, all the unknown angles in the expression $\dfrac{{\text{A}}}{{\text{B}}}$ (which are not available in the general trigonometric table) needs to be removed so that the final expression for $\dfrac{{\text{A}}}{{\text{B}}}$ is in terms of the angles given in the general trigonometric table where the trigonometric functions (i.e., sine, cosine, etc) of these angles are known.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

