
If $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$ then ${A^{4n + 1}},n \in N$
$\left( a \right)\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
$\left( b \right)\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\left( c \right)\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\left( d \right)\left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\
0&{ - i}&0 \\
0&0&{ - i}
\end{array}} \right]$
Answer
585k+ views
Hint: In this particular question use the concept that first find out the square of the matrix and then fourth power of the matrix using matrix multiplication and also use that in complex, $i = \sqrt { - 1} \Rightarrow {i^2} = - 1$ so use these concepts to reach the solution of the question.
Complete step by step answer:
Given matrix
$A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Now we have to find out the value of ${A^{4n + 1}}$, where $n \in N$.
Now multiply matrix A with matrix A we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Now apply matrix multiplication rule we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{i^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + {i^2} + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {i^2}}
\end{array}} \right]$
Now as we know that in complex, $i = \sqrt { - 1} \Rightarrow {i^2} = - 1$ s use this property we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now multiply ${A^2}$ with ${A^2}$ we have,
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - 1} \right)}^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + {{\left( { - 1} \right)}^2} + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {{\left( { - 1} \right)}^2}}
\end{array}} \right]$
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$..................... (1), where I is called as identity matrix.
Now as we know that ${I^m} = 1...........\left( 2 \right),m \in N$
Now we have to find out the value of
${A^{4n + 1}}$
Now the above equation is also written as,
$ \Rightarrow {A^{4n + 1}} = \left( {{A^{4n}}} \right)\left( A \right)$
$ \Rightarrow {A^{4n + 1}} = {\left( {{A^4}} \right)^n}\left( A \right)$
Now from equation (1) we have,
$ \Rightarrow {A^{4n + 1}} = {\left( I \right)^n}\left( A \right)$
Now from equation (2) we have,
$ \Rightarrow {A^{4n + 1}} = \left( 1 \right)\left( A \right)$
$ \Rightarrow {A^{4n + 1}} = \left( A \right)$
$ \Rightarrow {A^{4n + 1}} = A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that we always recall how to multiply two matrices which is shown above and always recall that the power of identity matrix which belongs to a natural number always remains an identity matrix.
Complete step by step answer:
Given matrix
$A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Now we have to find out the value of ${A^{4n + 1}}$, where $n \in N$.
Now multiply matrix A with matrix A we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Now apply matrix multiplication rule we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{{i^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + {i^2} + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {i^2}}
\end{array}} \right]$
Now as we know that in complex, $i = \sqrt { - 1} \Rightarrow {i^2} = - 1$ s use this property we have,
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now multiply ${A^2}$ with ${A^2}$ we have,
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
{{{\left( { - 1} \right)}^2} + 0 + 0}&{0 + 0 + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + {{\left( { - 1} \right)}^2} + 0}&{0 + 0 + 0} \\
{0 + 0 + 0}&{0 + 0 + 0}&{0 + 0 + {{\left( { - 1} \right)}^2}}
\end{array}} \right]$
$ \Rightarrow {A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$..................... (1), where I is called as identity matrix.
Now as we know that ${I^m} = 1...........\left( 2 \right),m \in N$
Now we have to find out the value of
${A^{4n + 1}}$
Now the above equation is also written as,
$ \Rightarrow {A^{4n + 1}} = \left( {{A^{4n}}} \right)\left( A \right)$
$ \Rightarrow {A^{4n + 1}} = {\left( {{A^4}} \right)^n}\left( A \right)$
Now from equation (1) we have,
$ \Rightarrow {A^{4n + 1}} = {\left( I \right)^n}\left( A \right)$
Now from equation (2) we have,
$ \Rightarrow {A^{4n + 1}} = \left( 1 \right)\left( A \right)$
$ \Rightarrow {A^{4n + 1}} = \left( A \right)$
$ \Rightarrow {A^{4n + 1}} = A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So this is the required answer.
So, the correct answer is “Option C”.
Note: Whenever we face such types of questions the key concept we have to remember is that we always recall how to multiply two matrices which is shown above and always recall that the power of identity matrix which belongs to a natural number always remains an identity matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

