
If $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$ then ${A^{4n + 1}} = $ , $\left( {n \in N} \right)$
A. $\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\
0&{ - i}&0 \\
0&0&{ - i}
\end{array}} \right]$
Answer
580.8k+ views
Hint:
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

