
If $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$ then ${A^{4n + 1}} = $ , $\left( {n \in N} \right)$
A. $\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\
0&{ - i}&0 \\
0&0&{ - i}
\end{array}} \right]$
Answer
554.7k+ views
Hint:
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

