
If $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$ then ${A^{4n + 1}} = $ , $\left( {n \in N} \right)$
A. $\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
{ - i}&0&0 \\
0&{ - i}&0 \\
0&0&{ - i}
\end{array}} \right]$
Answer
562.5k+ views
Hint:
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Then, we will find the value of ${A^{4n + 1}}$
First, We will find the value of ${A^2}$ then after finding the value of ${A^2}$ we will find the value of ${A^4}$
After that using the property ${A^{4n + 1}}={A^{4n}}$.
Complete step by step solution:
Here, we have given the value of $A = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
So, we have to find the value of ${A^{4n + 1}}$
Now,
${A^2} = A.A$
$\therefore {A^2} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
$\therefore $ By solving above equation, we get
${A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
Now, for ${A^4}$
${A^4} = {A^2}.{A^2}$
$\therefore {A^4} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right].\left[ {\begin{array}{*{20}{c}}
{ - 1}&0&0 \\
0&{ - 1}&0 \\
0&0&{ - 1}
\end{array}} \right]$
$\therefore $By solving above equation, we get
${A^4} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I$
We can also write ${A^{4n + 1}}$ as ${A^{4n}}$ .A
$\therefore {A^{4n}}.A = {\left( {{A^4}} \right)^n}.A$
$\because $We have proven above that ${A^4} = I$
$\therefore {A^{4n}}.A = {\left( I \right)^n}.A$
As we know that ${I^n} = I$
$\therefore {A^{4n}}.A = I.A$
$\therefore {A^{4n + 1}} = A$
$\therefore {A^{4n + 1}} = \left[ {\begin{array}{*{20}{c}}
i&0&0 \\
0&i&0 \\
0&0&i
\end{array}} \right]$
Note:
Additional Information:
Some different types of Matrices:
Symmetric Matrix: A square matrix A $ = \left[ {{a_{ij}}} \right]$ is called a symmetric matrix if ${a_{ij}} = {a_{ij}},$ for all i, j.
Skew-Symmetric Matrix: When ${a_{ij}} = - {a_{ij}}$
Orthogonal Matrix: If $A{A^T} = {I_n} = {A^T}.A$
Involuntary Matrix: ${A^2} = I$ or ${A^{ - 1}} = A$
Idempotent Matrix: If ${A^2} = A$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

