
If \[A = \left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\] ,find\[\,{A^2} - 5A + 4I\] and hence find the matrix X such that \[{A^2} - 5A + 4I + X = 0\].
Answer
577.2k+ views
Hint: As you can see, this numerical is based on matrix. So, what is a matrix? In mathematics, matrix is defined as a set of numbers arranged in rows and columns, so as to form a rectangular array. In this numerical we need to find \[{A^2} - 5A + 4I\] , for that we will find \[{A^2} - 5A\,\,and\,\,4I\] separately and add them and we will get required answer.
Complete step by solution:
Given data: Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, even when the product remains definite after changing the order of the factors
We are given the matrix A
\[A = \left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\]
We need to find \[{A^2} - 5A + 4I\] , also find X when \[{A^2} - 5A + 4I + X = 0\] .
We will find \[{A^2}, - 5A,4I\] separately
We know,
\[
{A^2} = A \cdot A \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\]
Multiplying the two matrices, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 1}&2 \\
9&{ - 2}&5 \\
0&{ - 1}&{ - 2}
\end{array}} \right]\]
Now,
\[
\Rightarrow - 5A = - 5\left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\Rightarrow - 5A = \left[ {\begin{array}{*{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] \\
\]
Also,
\[
\Rightarrow 4I = 4\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] \\
\Rightarrow 4I = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\]
Now, we will add \[{A^2}, - 5A,4I\] together
\[
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
5&{ - 1}&2 \\
9&{ - 2}&5 \\
0&{ - 1}&{ - 2}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{5 - 10 + 4}&{ - 1 + 0 + 0}&{2 - 5 + 0} \\
{9 - 10 - 0}&{ - 2 - 5 + 4}&{5 - 15 + 0} \\
{0 - 5 + 0}&{ - 1 + 5 + 0}&{ - 2 + 0 + 4}
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
\]
i.e.: the required matrix is given by
\[ \Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right]\]
Now again, to find the value of X when \[{A^2} - 5A + 4I + X = 0\]
Here,
\[
{A^2} - 5A + 4I + X = 0 \\
\Rightarrow X = 0 - ({A^2} - 5A + 4I) \\
\Rightarrow X = - ({A^2} - 5A + 4I) \\
\Rightarrow X = - \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
1&1&3 \\
1&3&{10} \\
5&{ - 4}&{ - 2}
\end{array}} \right] \\
\]
Hence the required X matrix is given by
\[X = \left[ {\begin{array}{*{20}{c}}
1&1&3 \\
1&3&{10} \\
5&{ - 4}&{ - 2}
\end{array}} \right]\]
Note: Students often make mistakes in multiplying the matrices. You should always be careful while computing the values of multiplication of matrices. Also, do not be confused between matrices and determinants. The identity matrix is denoted by a boldface one 1. Identity matrix is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix unchanged.
Complete step by solution:
Given data: Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, even when the product remains definite after changing the order of the factors
We are given the matrix A
\[A = \left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\]
We need to find \[{A^2} - 5A + 4I\] , also find X when \[{A^2} - 5A + 4I + X = 0\] .
We will find \[{A^2}, - 5A,4I\] separately
We know,
\[
{A^2} = A \cdot A \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\]
Multiplying the two matrices, we get
\[ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
5&{ - 1}&2 \\
9&{ - 2}&5 \\
0&{ - 1}&{ - 2}
\end{array}} \right]\]
Now,
\[
\Rightarrow - 5A = - 5\left[ {\begin{array}{*{20}{c}}
2&0&1 \\
2&1&3 \\
1&{ - 1}&0
\end{array}} \right] \\
\Rightarrow - 5A = \left[ {\begin{array}{*{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] \\
\]
Also,
\[
\Rightarrow 4I = 4\left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] \\
\Rightarrow 4I = \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\]
Now, we will add \[{A^2}, - 5A,4I\] together
\[
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
5&{ - 1}&2 \\
9&{ - 2}&5 \\
0&{ - 1}&{ - 2}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{ - 10}&0&{ - 5} \\
{ - 10}&{ - 5}&{ - 15} \\
{ - 5}&5&0
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
4&0&0 \\
0&4&0 \\
0&0&4
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{5 - 10 + 4}&{ - 1 + 0 + 0}&{2 - 5 + 0} \\
{9 - 10 - 0}&{ - 2 - 5 + 4}&{5 - 15 + 0} \\
{0 - 5 + 0}&{ - 1 + 5 + 0}&{ - 2 + 0 + 4}
\end{array}} \right] \\
\Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
\]
i.e.: the required matrix is given by
\[ \Rightarrow {A^2} - 5A + 4I = \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right]\]
Now again, to find the value of X when \[{A^2} - 5A + 4I + X = 0\]
Here,
\[
{A^2} - 5A + 4I + X = 0 \\
\Rightarrow X = 0 - ({A^2} - 5A + 4I) \\
\Rightarrow X = - ({A^2} - 5A + 4I) \\
\Rightarrow X = - \left[ {\begin{array}{*{20}{c}}
{ - 1}&{ - 1}&{ - 3} \\
{ - 1}&{ - 3}&{ - 10} \\
{ - 5}&4&2
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
1&1&3 \\
1&3&{10} \\
5&{ - 4}&{ - 2}
\end{array}} \right] \\
\]
Hence the required X matrix is given by
\[X = \left[ {\begin{array}{*{20}{c}}
1&1&3 \\
1&3&{10} \\
5&{ - 4}&{ - 2}
\end{array}} \right]\]
Note: Students often make mistakes in multiplying the matrices. You should always be careful while computing the values of multiplication of matrices. Also, do not be confused between matrices and determinants. The identity matrix is denoted by a boldface one 1. Identity matrix is a square matrix of order n, and also a special kind of diagonal matrix. It is called an identity matrix because multiplication with it leaves a matrix unchanged.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

