
If $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$ and find ${A^{ - 1}}$ and solve the system of linear equation $2x - 3y + 5z = 11,3x + 2y - 4z = - 5$ and $x + y - 2z = - 3.$
Answer
585.9k+ views
Hint: We have a square matrix $A$ , which is nonsingular then there exist an $n \times n$ matrix ${A^{ - 1}}$ which is called the inverse of $A$ such that $A{A^{ - 1}} = {A^{ - 1}}A = I$ , where $I$ is the identity matrix.
Complete step-by-step solution:
Given:
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = - 5 \\
x + y - 2z = - 3 \\
$
System of linear equation $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$
[Solving determinant, we get]
$
\left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| \\
= 2( - 4 + 4) + 3( - 6 + 4) + 5(3 - 2) \\
= 0 - 6 + 5 \\
= - 1 \\
$
Let $cij$ be the co-factors of the element $aij$ in $A = [aij]$ . Then,
\[
{C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 0,{C_{12}} = {( - 1)^{1 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 2,{C_{13}} = {( - 1)^{1 + 3}}\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1, \\
{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1,{C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = - 9,{C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 5, \\
{C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 2}&5 \\
2&4
\end{array}} \right| = 2,{C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = 23,{C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 13. \\
\]
Now, finding the $adj(A)$
$
adj = {\left[ {\begin{array}{*{20}{c}}
0&2&1 \\
{ - 1}&{ - 9}&5 \\
2&{23}&{13}
\end{array}} \right]^T} \\
= \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right] \\
$
We knew that the formula of ${A^{ - 1}}$ is
$
\Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA \\
{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right] \\
$
Now, the given system of equation can be written in matrix form as follows,
$
\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
{ - 5} \\
{ - 3}
\end{array}} \right] \\
X = {A^{ - 1}}B \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
{ - 5} \\
{ - 3}
\end{array}} \right] \\
$
Multiplying ${A^{ - 1}}B$ we get,
\[
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 + 5 - 6} \\
{22 + 45 - 69} \\
{11 + 25 - 39}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 2} \\
{ - 3}
\end{array}} \right] \\
\Rightarrow x = \dfrac{{ - 1}}{{ - 1}},y = \dfrac{{ - 2}}{1},z = \dfrac{{ - 3}}{{ - 1}} \\
\therefore x = 1,y = - 2,z = 3 \\
\]
Note: In this type of question students often make mistakes while finding the cofactor so keep your mind focused while doing so. Also ${A^{ - 1}} \ne \dfrac{1}{A}\left| A \right|$ as many people make this mistake. Remember transpose of a matrix is nothing but interchanging the row into column and vice-versa.
Complete step-by-step solution:
Given:
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = - 5 \\
x + y - 2z = - 3 \\
$
System of linear equation $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$
[Solving determinant, we get]
$
\left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| \\
= 2( - 4 + 4) + 3( - 6 + 4) + 5(3 - 2) \\
= 0 - 6 + 5 \\
= - 1 \\
$
Let $cij$ be the co-factors of the element $aij$ in $A = [aij]$ . Then,
\[
{C_{11}} = {( - 1)^{1 + 1}}\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 0,{C_{12}} = {( - 1)^{1 + 2}}\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 2,{C_{13}} = {( - 1)^{1 + 3}}\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1, \\
{C_{21}} = {( - 1)^{2 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1,{C_{22}} = {( - 1)^{2 + 2}}\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = - 9,{C_{23}} = {( - 1)^{2 + 3}}\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 5, \\
{C_{31}} = {( - 1)^{3 + 1}}\left| {\begin{array}{*{20}{c}}
{ - 2}&5 \\
2&4
\end{array}} \right| = 2,{C_{32}} = {( - 1)^{3 + 2}}\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = 23,{C_{33}} = {( - 1)^{3 + 3}}\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 13. \\
\]
Now, finding the $adj(A)$
$
adj = {\left[ {\begin{array}{*{20}{c}}
0&2&1 \\
{ - 1}&{ - 9}&5 \\
2&{23}&{13}
\end{array}} \right]^T} \\
= \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right] \\
$
We knew that the formula of ${A^{ - 1}}$ is
$
\Rightarrow {A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adjA \\
{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right] \\
$
Now, the given system of equation can be written in matrix form as follows,
$
\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
{ - 5} \\
{ - 3}
\end{array}} \right] \\
X = {A^{ - 1}}B \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
{ - 5} \\
{ - 3}
\end{array}} \right] \\
$
Multiplying ${A^{ - 1}}B$ we get,
\[
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 + 5 - 6} \\
{22 + 45 - 69} \\
{11 + 25 - 39}
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 2} \\
{ - 3}
\end{array}} \right] \\
\Rightarrow x = \dfrac{{ - 1}}{{ - 1}},y = \dfrac{{ - 2}}{1},z = \dfrac{{ - 3}}{{ - 1}} \\
\therefore x = 1,y = - 2,z = 3 \\
\]
Note: In this type of question students often make mistakes while finding the cofactor so keep your mind focused while doing so. Also ${A^{ - 1}} \ne \dfrac{1}{A}\left| A \right|$ as many people make this mistake. Remember transpose of a matrix is nothing but interchanging the row into column and vice-versa.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

