
If $A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$ and ${A^6} = KA - 205I$ then
(A) $K = $$11$
(B) $K = $$22$
(C) $K = $$33$
(D) $K = $$44$
Answer
579k+ views
Hint:
Find ${A^6}$ in multiple steps, i.e., ${A^2} = A \times A$, ${A^3} = {A^2} \times A$ and ${A^6} = {A^3} \times {A^3}$. Then use the given relation ${A^6} = KA - 205I$ to find the value of $K$.
Complete step by step solution:
Given, $A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
We have to calculate ${A^6}$. For this, we find firstly ${A^2}$ and ${A^3}$.
\[{A^2} = A \times A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]\]
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 \times 1 + 2 \times - 1}&{1 \times 2 + 2 \times 3} \\
{ - 1 \times 1 + 3 \times - 1}&{ - 1 \times 2 + 3 \times 3}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 - 2}&{2 + 6} \\
{ - 1 - 3}&{ - 2 + 9}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&8 \\
{ - 4}&7
\end{array}} \right]$
And \[{A^3} = {A^2} \times A = \left[ {\begin{array}{*{20}{c}}
{ - 1}&8 \\
{ - 4}&7
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]\]
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times 1 + 8 \times - 1}&{ - 1 \times 2 + 8 \times 3} \\
{ - 4 \times 1 + 7 \times - 1}&{ - 4 \times 2 + 7 \times 3}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 1 - 8}&{ - 2 + 24} \\
{ - 4 - 7}&{ - 8 + 21}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right]$
Now, \[{A^6} = {A^3} \times {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right]\]
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{ - 9 \times - 9 + 22 \times - 11}&{ - 9 \times 22 + 22 \times 13} \\
{ - 11 \times - 9 + 13 \times - 11}&{ - 11 \times 22 + 13 \times 13}
\end{array}} \right]$
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{81 - 242}&{ - 198 + 286} \\
{99 - 143}&{ - 242 + 169}
\end{array}} \right]$
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right]$
We have ${A^6} = KA - 205I$
$ \Rightarrow $${A^6} + 205I = KA$ ….. (1)
Substitute the value of ${A^6}$, $I$ and $A$ in (1);
$\left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right] + 205\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{205}&0 \\
0&{205}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 161 + 205}&{88 + 0} \\
{ - 44 + 0}&{ - 73 + 205}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{44}&{88} \\
{ - 44}&{132}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow 44\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
On comparing both sides, we get-
\[ \Rightarrow K = 44\]
Hence, option (D) is the correct answer.
Note:
Here, the symbol $I$ is used for identity matrices that have an order $n \times n$. The entries on the diagonal from the upper left to the bottom right are all $1's$ and all other entries are $0$. For ex-
${I_2} = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ , ${I_3} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
The identity matrix plays a similar role in operations with matrices as the number $1$ plays in operations with real numbers.
Find ${A^6}$ in multiple steps, i.e., ${A^2} = A \times A$, ${A^3} = {A^2} \times A$ and ${A^6} = {A^3} \times {A^3}$. Then use the given relation ${A^6} = KA - 205I$ to find the value of $K$.
Complete step by step solution:
Given, $A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
We have to calculate ${A^6}$. For this, we find firstly ${A^2}$ and ${A^3}$.
\[{A^2} = A \times A = \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]\]
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 \times 1 + 2 \times - 1}&{1 \times 2 + 2 \times 3} \\
{ - 1 \times 1 + 3 \times - 1}&{ - 1 \times 2 + 3 \times 3}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 - 2}&{2 + 6} \\
{ - 1 - 3}&{ - 2 + 9}
\end{array}} \right]$
$ \Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{ - 1}&8 \\
{ - 4}&7
\end{array}} \right]$
And \[{A^3} = {A^2} \times A = \left[ {\begin{array}{*{20}{c}}
{ - 1}&8 \\
{ - 4}&7
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]\]
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 1 \times 1 + 8 \times - 1}&{ - 1 \times 2 + 8 \times 3} \\
{ - 4 \times 1 + 7 \times - 1}&{ - 4 \times 2 + 7 \times 3}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 1 - 8}&{ - 2 + 24} \\
{ - 4 - 7}&{ - 8 + 21}
\end{array}} \right]$
$ \Rightarrow {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right]$
Now, \[{A^6} = {A^3} \times {A^3} = \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{ - 9}&{22} \\
{ - 11}&{13}
\end{array}} \right]\]
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{ - 9 \times - 9 + 22 \times - 11}&{ - 9 \times 22 + 22 \times 13} \\
{ - 11 \times - 9 + 13 \times - 11}&{ - 11 \times 22 + 13 \times 13}
\end{array}} \right]$
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{81 - 242}&{ - 198 + 286} \\
{99 - 143}&{ - 242 + 169}
\end{array}} \right]$
$ \Rightarrow {A^6} = \left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right]$
We have ${A^6} = KA - 205I$
$ \Rightarrow $${A^6} + 205I = KA$ ….. (1)
Substitute the value of ${A^6}$, $I$ and $A$ in (1);
$\left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right] + 205\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 161}&{88} \\
{ - 44}&{ - 73}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
{205}&0 \\
0&{205}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{ - 161 + 205}&{88 + 0} \\
{ - 44 + 0}&{ - 73 + 205}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{44}&{88} \\
{ - 44}&{132}
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
$ \Rightarrow 44\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right] = K\left[ {\begin{array}{*{20}{c}}
1&2 \\
{ - 1}&3
\end{array}} \right]$
On comparing both sides, we get-
\[ \Rightarrow K = 44\]
Hence, option (D) is the correct answer.
Note:
Here, the symbol $I$ is used for identity matrices that have an order $n \times n$. The entries on the diagonal from the upper left to the bottom right are all $1's$ and all other entries are $0$. For ex-
${I_2} = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ , ${I_3} = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right]$
The identity matrix plays a similar role in operations with matrices as the number $1$ plays in operations with real numbers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

