
If \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\], \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\]then which of the following are relations from A to B?
A) \[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
B) \[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
C) \[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
D) \[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Answer
511.2k+ views
Hint: Here we have to let a relation R from A to B such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
