
If \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\], \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\]then which of the following are relations from A to B?
A) \[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
B) \[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
C) \[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
D) \[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Answer
577.8k+ views
Hint: Here we have to let a relation R from A to B such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

