
If \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\], \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\]then which of the following are relations from A to B?
A) \[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
B) \[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
C) \[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
D) \[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Answer
591.6k+ views
Hint: Here we have to let a relation R from A to B such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
And then calculate \[{\text{A}} \times {\text{B}}\]
Complete step by step solution:
We are given two sets \[{\text{A = }}\left\{ {{\text{a,b,c,d}}} \right\}\] and \[{\text{B = }}\left\{ {{\text{p,q,r,s}}} \right\}\] and we have to make a relation from A to B.
Let the relation from A to B be R such that \[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\] and the domain of
\[{\text{R = \{ a:a}} \in {\text{A (a,b)}} \in {{R\;for some\;b}} \in {\text{B\} }}\]and the range of \[{\text{R = \{ \;b:b}} \in {\text{B,(a,b)}} \in {{R\;for some\;a}} \in {\text{A\} }}\]
Then ,
First calculating \[{\text{A}} \times {\text{B}}\] we get:
\[{\text{A}} \times {\text{B}} = \left\{ {\left( {{\text{a,p}}} \right){\text{,}}\left( {a,q} \right),\left( {a,r} \right),\left( {a,s} \right),\left( {b,p} \right),\left( {{\text{b,q}}} \right){\text{,}}\left( {b,r} \right){\text{,}}\left( {b,s} \right){\text{,}}\left( {c,p} \right){\text{,}}\left( {c,q} \right){\text{,}}\left( {{\text{c,r}}} \right){\text{,}}\left( {c,s} \right){\text{,}}\left( {d,p} \right){\text{,}}\left( {d,q} \right){\text{,}}\left( {d,r} \right){\text{,}}\left( {{\text{d,s}}} \right)} \right\}\]
Since R should be subset of \[{\text{A}} \times {\text{B}}\]
\[{\text{R}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore checking for option A we get:-
\[R1 = \left\{ {\left( {a,p} \right),\left( {b,q} \right),\left( {c,s} \right)} \right\}\]
Since,
\[{\text{R1}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore, option A is correct.
Now checking for option B we get:-
\[R2 = \left\{ {\left( {q,b} \right),\left( {c,s} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R2}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore option B is incorrect.
Checking for option C we get:-
\[R3 = \left\{ {\left( {a,p} \right),\left( {a,q} \right),\left( {d,p} \right),\left( {c,r} \right),\left( {d,r} \right)} \right\}\]
Since,
\[{\text{R3}} \subseteq {\text{A}} \times {\text{B}}\]
Therefore it is a correct option.
Now checking for option D we get:-
\[R4 = \left\{ {\left( {a,p} \right),\left( {q,a} \right),\left( {b,s} \right),\left( {s,b} \right)} \right\}\]
Since,
\[{\text{R4}} \not\subset {\text{A}} \times {\text{B}}\]
Therefore it is incorrect option.
Hence, option A and option C are correct options.
Note:
The relation R should be a subset of \[{\text{A}} \times {\text{B}}\] to be a relation from A to B in which the first element of the ordered pair should be from set A and the second element should be from set B.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

