
If A is matrix of order 3, such that \[A\,\left( adj\text{ }A \right)\text{ }=\text{ }10\left( I \right),\] then what will be the value of \[|adj\text{ }A|\] ?
Choose the correct option.
A. 10
B . \[10\left( I \right)\]
C. 1
D . 100
Answer
607.8k+ views
Hint: Use the formula \[A\,(adj\text{ }A)\text{ }=\text{ }|A|\left( I \right)\] and \[|A|\,\times |(adj\text{ }A)|\text{ }=\text{ }|A{{|}^{n}}\], where n is the order of the matrix A.
Complete step-by-step answer:
In the question, we have to find the value of \[|adj\text{ }A|\]
Now, it is given that \[A\,\left( adj\text{ }A \right)\text{ }=\text{ }10\left( I \right)\] and we know that \[A\,(adj\text{ }A)\text{ }=\text{ }|A|\left( I \right)\].
So comparing the two we have:
\[\begin{align}
& \Rightarrow A\,(adj\text{ }A)\text{ }=\text{ }|A|\left( I \right) \\
& \Rightarrow A\,\left( adj\text{ }A \right)\text{ }=\text{ }10\left( I \right) \\
& \Rightarrow |A|=10 \\
\end{align}\]
Now, we also know that:
\[|A|\,\times |(adj\text{ }A)|\text{ }=\text{ }|A{{|}^{n}}\]
Where n is given as 3, since n is the order of the matrix A.
So solving for \[|adj\text{ }A|\], we have:
\[\begin{align}
& \Rightarrow |A|\,\times |(adj\text{ }A)|\text{ }=\text{ }|A{{|}^{n}} \\
& \Rightarrow 10\,\times |(adj\text{ }A)|\text{ }=\text{ }{{10}^{3}} \\
& \Rightarrow |(adj\text{ }A)|\text{ }=\text{ }{{10}^{2}} \\
& \Rightarrow |(adj\text{ }A)|\text{ }=\text{ }100 \\
\end{align}\]
So, the required value of \[|adj\text{ }A|=100\] and hence the correct answer is option D.
Note: Here students should know one important property of determinant, that is we can find the determinant of only the square matrix. The non-square matrix will not have the determinant.
Complete step-by-step answer:
In the question, we have to find the value of \[|adj\text{ }A|\]
Now, it is given that \[A\,\left( adj\text{ }A \right)\text{ }=\text{ }10\left( I \right)\] and we know that \[A\,(adj\text{ }A)\text{ }=\text{ }|A|\left( I \right)\].
So comparing the two we have:
\[\begin{align}
& \Rightarrow A\,(adj\text{ }A)\text{ }=\text{ }|A|\left( I \right) \\
& \Rightarrow A\,\left( adj\text{ }A \right)\text{ }=\text{ }10\left( I \right) \\
& \Rightarrow |A|=10 \\
\end{align}\]
Now, we also know that:
\[|A|\,\times |(adj\text{ }A)|\text{ }=\text{ }|A{{|}^{n}}\]
Where n is given as 3, since n is the order of the matrix A.
So solving for \[|adj\text{ }A|\], we have:
\[\begin{align}
& \Rightarrow |A|\,\times |(adj\text{ }A)|\text{ }=\text{ }|A{{|}^{n}} \\
& \Rightarrow 10\,\times |(adj\text{ }A)|\text{ }=\text{ }{{10}^{3}} \\
& \Rightarrow |(adj\text{ }A)|\text{ }=\text{ }{{10}^{2}} \\
& \Rightarrow |(adj\text{ }A)|\text{ }=\text{ }100 \\
\end{align}\]
So, the required value of \[|adj\text{ }A|=100\] and hence the correct answer is option D.
Note: Here students should know one important property of determinant, that is we can find the determinant of only the square matrix. The non-square matrix will not have the determinant.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

