
If A is a symmetric matrix and B is a skew symmetric matrix such that $A + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]$, then AB is equal to?
A. $\left[ {\begin{array}{*{20}{c}}
{ - 4}&2 \\
1&4
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
{ - 4}&{ - 2} \\
{ - 1}&4
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 1}&{ - 4}
\end{array}} \right]$
D. $\left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
1&{ - 4}
\end{array}} \right]$
Answer
509.1k+ views
Hint: To solve this question, we have to remember that a matrix A is a symmetric matrix if $A' = A$ and A is skew symmetric matrix if $A' = - A$, where $A'$ is the transpose of matrix A. If $A = {\left[ {{a_{ij}}} \right]_{m \times n}}$, then $A' = {\left[ {{a_{ji}}} \right]_{n \times m}}$
Complete step-by-step answer:
Given that,
A is a symmetric matrix, i.e. $A' = A$ ,
And,
B is a skew symmetric matrix, i.e. $B' = - B$
Such that,
$A + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]$ ………. (i)
We have to find AB.
So,
We know that,
${\left( {A + B} \right)^\prime } = A' + B'$ ……….. (ii)
We have,
Transposing equation (i), we will get
${\left( {A + B} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]$
Using equation (ii), we can write this as:
\[A' + B' = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]\] ………. (iii)
Putting $A' = A$ and $B' = - B$ in equation (iii), we will get
\[A - B = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]\] ……….. (iv)
Adding equation (i) and (iv), we will get
\[ \Rightarrow A - B + A + B = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow 2A = \left[ {\begin{array}{*{20}{c}}
4&8 \\
8&{ - 2}
\end{array}} \right]\]
\[ \Rightarrow A = \dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&8 \\
8&{ - 2}
\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\]
Putting this in equation (i), we will get
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right] + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
Now, we will find AB,
So,
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{0 + 4}&{ - 2 + 0} \\
{0 - 1}&{ - 4 + 0}
\end{array}} \right]\]
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 1}&{ - 4}
\end{array}} \right]\]
Here, we get \[AB = \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 1}&{ - 4}
\end{array}} \right]\]
Hence, the correct answer is option (C).
Note: whenever we asked such type of questions, we should also remember that any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix, i.e. A be a square matrix, then we can write $A = \dfrac{1}{2}\left( {A + A'} \right) + \dfrac{1}{2}\left( {A - A'} \right)$
Complete step-by-step answer:
Given that,
A is a symmetric matrix, i.e. $A' = A$ ,
And,
B is a skew symmetric matrix, i.e. $B' = - B$
Such that,
$A + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]$ ………. (i)
We have to find AB.
So,
We know that,
${\left( {A + B} \right)^\prime } = A' + B'$ ……….. (ii)
We have,
Transposing equation (i), we will get
${\left( {A + B} \right)^\prime } = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]$
Using equation (ii), we can write this as:
\[A' + B' = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]\] ………. (iii)
Putting $A' = A$ and $B' = - B$ in equation (iii), we will get
\[A - B = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right]\] ……….. (iv)
Adding equation (i) and (iv), we will get
\[ \Rightarrow A - B + A + B = \left[ {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 1}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow 2A = \left[ {\begin{array}{*{20}{c}}
4&8 \\
8&{ - 2}
\end{array}} \right]\]
\[ \Rightarrow A = \dfrac{1}{2}\left[ {\begin{array}{*{20}{c}}
4&8 \\
8&{ - 2}
\end{array}} \right]\]
\[ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\]
Putting this in equation (i), we will get
\[ \Rightarrow \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right] + B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
2&3 \\
5&{ - 1}
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\]
\[ \Rightarrow B = \left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
Now, we will find AB,
So,
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
2&4 \\
4&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
0&{ - 1} \\
1&0
\end{array}} \right]\]
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
{0 + 4}&{ - 2 + 0} \\
{0 - 1}&{ - 4 + 0}
\end{array}} \right]\]
\[ \Rightarrow AB = \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 1}&{ - 4}
\end{array}} \right]\]
Here, we get \[AB = \left[ {\begin{array}{*{20}{c}}
4&{ - 2} \\
{ - 1}&{ - 4}
\end{array}} \right]\]
Hence, the correct answer is option (C).
Note: whenever we asked such type of questions, we should also remember that any square matrix can be represented as the sum of a symmetric and a skew symmetric matrix, i.e. A be a square matrix, then we can write $A = \dfrac{1}{2}\left( {A + A'} \right) + \dfrac{1}{2}\left( {A - A'} \right)$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
