
If A is a square matrix such that ${{A}^{3}}=I$ then ${{A}^{-1}}$ is equal to
(A) $I$
(B) $A$
(C) ${{A}^{2}}$
(D) None of these
Answer
510.6k+ views
Hint: We solve this problem by first considering the given equation then multiplying it with the matrix ${{A}^{-1}}$. Then we use the properties of matrices, $A\left( BC \right)=\left( AB \right)C$, ${{A}^{-1}}A=I$ and $AI=IA=A$. Then we use them and simplify the obtained equation to find the value of the inverse of A, that is ${{A}^{-1}}$.
Complete step-by-step answer:
We are given that A is a square matrix.
We are also given that ${{A}^{3}}=I$, where $I$ is an identity matrix.
Now let us multiply the given equation with the inverse of A, that is ${{A}^{-1}}$. So, multiplying with ${{A}^{-1}}$ we get,
${{A}^{-1}}{{A}^{3}}={{A}^{-1}}I.........\left( 1 \right)$
Now let us consider the left-hand side of the equation (1), that is ${{A}^{-1}}{{A}^{3}}$.
Now let us consider a property of matrices.
$A\left( BC \right)=\left( AB \right)C$
Using this property, we can write ${{A}^{-1}}{{A}^{3}}$ as,
$\Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{-1}}A{{A}^{2}}=\left( {{A}^{-1}}A \right){{A}^{2}}$
Now, let us consider another property of matrices.
${{A}^{-1}}A=I$
Using the above property, we can write ${{A}^{-1}}{{A}^{3}}$ as,
$\begin{align}
& \Rightarrow {{A}^{-1}}{{A}^{3}}=\left( {{A}^{-1}}A \right){{A}^{2}} \\
& \Rightarrow {{A}^{-1}}{{A}^{3}}=\left( I \right){{A}^{2}} \\
\end{align}$
Now let us consider another property of matrices that when a matrix is multiplied to identity matrix, we get the same matrix, that is
$AI=IA=A$
So, we get that
$\Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{2}}.......\left( 2 \right)$
Now, let us consider the right-hand side of the equation (1), that is ${{A}^{-1}}I$.
Using the same above property we can write it as,
$\Rightarrow {{A}^{-1}}I={{A}^{-1}}...........\left( 3 \right)$
So, substituting the values obtained in equation (2) and equation (3) in the equation (1) we get,
$\begin{align}
& \Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{-1}}I \\
& \Rightarrow {{A}^{2}}={{A}^{-1}} \\
\end{align}$
So, we get the value of inverse of A as,
$\Rightarrow {{A}^{-1}}={{A}^{2}}$
Hence the answer is Option C.
Note: We can also solve this problem in another method.
Let us consider a property of matrices.
${{A}^{-1}}A=I$
Now let us multiply the above equation with ${{A}^{2}}$ on both sides. Then we get,
$\begin{align}
& \Rightarrow {{A}^{-1}}A{{A}^{2}}=I{{A}^{2}} \\
& \Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{2}} \\
\end{align}$
As we are given that ${{A}^{3}}=I$, let us substitute it in the above equation.
$\begin{align}
& \Rightarrow {{A}^{-1}}\left( I \right)={{A}^{2}} \\
& \Rightarrow {{A}^{-1}}={{A}^{2}} \\
\end{align}$
Hence the answer is Option C.
Complete step-by-step answer:
We are given that A is a square matrix.
We are also given that ${{A}^{3}}=I$, where $I$ is an identity matrix.
Now let us multiply the given equation with the inverse of A, that is ${{A}^{-1}}$. So, multiplying with ${{A}^{-1}}$ we get,
${{A}^{-1}}{{A}^{3}}={{A}^{-1}}I.........\left( 1 \right)$
Now let us consider the left-hand side of the equation (1), that is ${{A}^{-1}}{{A}^{3}}$.
Now let us consider a property of matrices.
$A\left( BC \right)=\left( AB \right)C$
Using this property, we can write ${{A}^{-1}}{{A}^{3}}$ as,
$\Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{-1}}A{{A}^{2}}=\left( {{A}^{-1}}A \right){{A}^{2}}$
Now, let us consider another property of matrices.
${{A}^{-1}}A=I$
Using the above property, we can write ${{A}^{-1}}{{A}^{3}}$ as,
$\begin{align}
& \Rightarrow {{A}^{-1}}{{A}^{3}}=\left( {{A}^{-1}}A \right){{A}^{2}} \\
& \Rightarrow {{A}^{-1}}{{A}^{3}}=\left( I \right){{A}^{2}} \\
\end{align}$
Now let us consider another property of matrices that when a matrix is multiplied to identity matrix, we get the same matrix, that is
$AI=IA=A$
So, we get that
$\Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{2}}.......\left( 2 \right)$
Now, let us consider the right-hand side of the equation (1), that is ${{A}^{-1}}I$.
Using the same above property we can write it as,
$\Rightarrow {{A}^{-1}}I={{A}^{-1}}...........\left( 3 \right)$
So, substituting the values obtained in equation (2) and equation (3) in the equation (1) we get,
$\begin{align}
& \Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{-1}}I \\
& \Rightarrow {{A}^{2}}={{A}^{-1}} \\
\end{align}$
So, we get the value of inverse of A as,
$\Rightarrow {{A}^{-1}}={{A}^{2}}$
Hence the answer is Option C.
Note: We can also solve this problem in another method.
Let us consider a property of matrices.
${{A}^{-1}}A=I$
Now let us multiply the above equation with ${{A}^{2}}$ on both sides. Then we get,
$\begin{align}
& \Rightarrow {{A}^{-1}}A{{A}^{2}}=I{{A}^{2}} \\
& \Rightarrow {{A}^{-1}}{{A}^{3}}={{A}^{2}} \\
\end{align}$
As we are given that ${{A}^{3}}=I$, let us substitute it in the above equation.
$\begin{align}
& \Rightarrow {{A}^{-1}}\left( I \right)={{A}^{2}} \\
& \Rightarrow {{A}^{-1}}={{A}^{2}} \\
\end{align}$
Hence the answer is Option C.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
